3,977 research outputs found
Area targeting and storage temperature selection for heat recovery loops
Inter-plant heat integration across a large site can be achieved using a Heat Recovery Loop (HRL). In this paper the relationship between HRL storage temperatures, heating and cooling utility savings (heat recovery) and total HRL exchanger area is investigated. A methodology for designing a HRL based on a ΔTmin approach is compared to three global optimisation approaches where heat exchangers are constrained to have either the same Number of Heat Transfer Units (NTU), Log-Mean Temperature Difference (LMTD) or no constraints (actual global optimum). Analysis is performed using time averaged flow rate and temperature data. Attention is given to understanding the actual temperature driving force of the HRL heat exchangers compared to the apparent driving force as indicated by the composite curves. The cold storage temperature is also varied to minimise the total heat exchanger area. Results for the same heat recovery level show that the ΔTmin approach is effective at minimising total area to within 5 % of the unconstrained global optimisation approach. The study also demonstrates the efficiency of the ΔT min approach to HRL design compared to the other methods which require considerable computational resources
Entrepreneurial intentions among students: towards a re-focused research agenda
Purpose – This paper aims to address the need for a re-focused research agenda in relation to graduate entrepreneurship. An important theme for some years has been the effort to monitor attitudes and intentions of students towards starting up their own businesses. It is timely, however, to raise some questions about both the impact of this research and likewise the general approach it has taken in understanding the phenomenon of graduate entrepreneurship. Design/methodology/approach – The paper draws on a large data set (over 8,000 students) from one UK region. Specifically, it presents data from the 2007/2008 Entrepreneurial Intentions (EI) survey within the Yorkshire and Humberside region and reflects back over previous iterations of this research. Findings – The paper identifies three key outcomes. First, it establishes that across all years of the survey a substantial minority of students consistently hold relatively strong start-up intentions. Second, the paper highlights that, despite considerable efforts to increase the numbers moving to start-up, little impact is discernible. Third, the paper suggests that, although the EI survey is useful as a stock-taking exercise, it fails to address critical questions around the impact of higher education on entrepreneurship and the transition from entrepreneurial intent to the act of venture creation. Originality/value – The paper provides an important positioning perspective on the relationship between higher education and graduate entrepreneurship. While highlighting the importance of the EI research, the paper establishes the need for a re-focused research agenda; one that is conceptually robust and with a focus on the student journey from higher education to graduate entrepreneur
Design and operation methods for better performing heat recovery loops
Inter-plant integration via a heat recovery loop (HRL) is an economic method for increasing total site process energy efficiency of semi-continuous processes. Results show that both the constant storage temperature approach and variable storage temperature approach have merit. Depending on the mix of source and sink streams attached, it may be advantageous to change the operation of an existing HRL from a constant temperature storage to a variable temperature storage. To realise the full benefits of this change in operation, a redistribution of the existing heat exchanger area may be needed
Optimal waste stream discharge temperature selection for dryer operations using thermo-economic assessment
A typical drying process that has liquid and gas discharge streams has been analysed and the impact of selecting various combinations of soft temperatures on heat recovery, utility targets, area targets, capital cost and total cost is reported. The method is based on the plus-minus principle and traditional pinch analysis methods for utility, area and capital cost targeting with the modification of using a ΔT contribution. Results show that there is significant benefit from optimising discharge temperatures for total cost. To achieve minimum energy consumption and total cost, heat recovery from the dryer exhaust air is necessary. Heat recovery from liquid heat sources is shown to be preferable over gas streams due to a higher film coefficient resulting in less heat exchanger area and capital cost. There is also value in making process modifications, such as combining streams or removing small streams to be solely heated by utility, to reduce the number of network heat exchangers. For the best case, the discharge temperatures of the leaving streams are 18.0 °C for water condensate (liquid stream) and 52.4 °C for the exhaust air (gas stream)
Minimising energy use in milk powder production using process integration techniques
Spray drying of milk powder is an energy intensive process and there remains a significant opportunity to reduce energy consumption by applying process integration principles. The ability to optimally integrate the drying process with the other processing steps has the potential to improve the overall efficiency of the entire process, especially when exhaust heat recovery is considered. However, achieving the minimum energy targets established using pinch analysis results in heat exchanger networks that, while theoretically feasible, are impracticable, unrealistic, contain large number of units, and ultimately uneconomic. Integration schemes that are acceptable from an operational point of view are examined in this paper. The use of evaporated water is an important factor to achieve both energy and water reductions. The economics of additional heat recovery seem favourable and exhaust heat recovery is economically justifiable on its own merits, although milk powder deposition should be minimised by selecting an appropriate target temperature for the exhaust air. This will restrict the amount of heat recovery but minimise operational risk from heat exchanger fouling. The thermodynamic constraints caused by the operating temperatures of the dryer and the poor economics exclude the use of heat pumps for exhaust heat recovery in the short to medium term
Optimal stream discharge temperatures for a dryer operation using a thermo-economic assessment
The application of traditional pinch analysis to processes involving waste streams require the discharge temperatures of the waste streams to be estimated prior to performing the pinch analysis
Tube shape selection for heat recovery from particle-laden exhaust gas streams
Heat recovery from exhaust gas streams is applicable to a wide variety of industries. Two problems encountered in exhaust gas heat recovery are: the high heat transfer resistance of gases and the presence of entrained particulate matter, which can limit the use of extended surface area. Standard heat exchangers use round tube. This study uses Computational Fluid Dynamics (CFD) to investigate whether round or another shape is the best tube selection for exhaust heat recovery.
Tube shape rankings are based on taking into account heat transfer, gas flow resistance and foulability. Foulability is inferred from the average wall shear stress around the front or back of each shape. An estimated asymptotic fouling resistance is used to calculate an equivalent fouled j factor, jf. CFD results suggest the best tube for exhaust heat recovery is an elliptical tube. The ellipse shape produced j/f and jf/f ratios (where f is the tube bank friction factor) over 1.5 times larger than that of standard round tube. A flattened round tube is also promising and may be the practical and economic optimum
A derivative method for minimising total cost in heat exchanger networks through optimal area allocation
This paper presents a novel Cost Derivative Method (CDM) for finding the optimal area allocation for a defined Heat Exchanger Network (HEN) structure and stream data, without any stream splits to achieve minimum total cost. Using the Pinch Design Method (PDM) to determine the HEN structure, the approach attempts to add, remove and shift area to exchangers where economic benefits are returned. From the derivation of the method, it is found that the slope of the ε-NTU relationship for the specific heat exchanger type, in combination with the difference in exchanger inlet temperatures and the overall heat transfer coefficient, are critical to calculating the extra overall duty each incremental area element returns. The approach is able to account for differences in film coefficients, heat exchanger types, flow arrangements, exchanger cost functions, and utility pricing. Incorporated into the method is the newly defined “utility cost savings flow-on” factor, θ, which evaluates downstream effects on utility use and cost that are caused by changing the area of one exchanger. To illustrate the method, the CDM is applied to the distillation example of Gundersen (2000). After applying the new CDM, the total annual cost was reduced by 7.1 % mainly due to 24 % less HEN area for similar heat recovery. Area reduction resulted from one exchanger having a minimum approach temperature (ΔTmin) of 7.7 °C while the other recovery exchangers had larger ΔTmin values. The optimum ΔTmin for the PDM was 12.5 °C. The CDM solution was found to give a comparable minimum total area and cost to two recently published programming HEN synthesis solutions for the same problem without requiring the increased network complexity through multiple stream splits
Minimising carbon emissions and energy expended for the New Zealand transport sector through to 2050
Carbon Emissions Pinch Analysis (CEPA) and Energy Return on Energy Investment (EROI) analysis are combined to investigate the feasibility of New Zealand (NZ) reaching a 1990 emission levels for transport in 2050. The transportation sector traditionally has been a difficult area to transition to high levels of renewable energy because of the strong dependency on fossil fuels. Multiple scenarios for reducing transport emissions are analysed. With NZ’s unique mix of renewable energy resources the analysis demonstrates that NZ is in a very good position to sustainably meet their future transport needs provided substantial commitment is made to transition light vehicle fleet to hybrid vehicles, plug-in hybrids vehicles and electric vehicles by 2050. Electrification of rail within and between major centres will also require major political commitment. The resulting increase in electricity demand for transport is 3.6 TWh (or 4.8 % of electricity generation in NZ). We show the minimum amount of biofuel renewable production to achieve the goal of 1990 emissions level in 2050 is 46 PJ. Delivering 46 PJ is expected to be well within the potential biofuel production capacity of NZ. The delivery of economically competitive renewable liquid biofuels will also require close cooperation and system integration with other energy systems like the electricity sector and industrial process heat sector
An investigation of milk powder deposition on parallel fins
One method to reduce the energy consumption of industrial milk spray dryers is to recover waste heat from the exhaust dryer air. A significant challenge associated with this opportunity is the air contains a small amount of powder that may deposit on the face and surfaces of a recuperator. This paper introduces a novel lab based test that simulates powder deposition on a bank of parallel plate fins at exhaust dryer air conditions. The fin bank acts like the face of a typical finned tube row in a recuperator. The aim of this study is to look at how deposition on the front of fins is affected by the air conditions. Results show similar characteristics to other milk powder deposition studies that exhibit a dramatic increase in deposition once critical stickiness levels are reached. As powder deposits on the face of the fins, the pressure drop across the bank increases until eventually an asymptote occurs, at which point the rates of deposition and removal are similar. For very sticky conditions, deposition on the face of the fins can cause a rise in the pressure drop by as much as 65%. The pressure drop has also been successfully related to the percentage of open frontal area of the fins with and without deposition. Deposition inside and at the rear of the fin bank was found to be minimal
- …
