2,047 research outputs found

    Theory of scanning gate microscopy

    Get PDF
    A systematic theory of the conductance measurements of non-invasive (weak probe) scanning gate microscopy is presented that provides an interpretation of what precisely is being measured. A scattering approach is used to derive explicit expressions for the first and second order conductance changes due to the perturbation by the tip potential in terms of the scattering states of the unperturbed structure. In the case of a quantum point contact, the first order correction dominates at the conductance steps and vanishes on the plateaus where the second order term dominates. Both corrections are non-local for a generic structure. Only in special cases, such as that of a centrally symmetric quantum point contact in the conductance quantization regime, can the second order correction be unambiguously related with the local current density. In the case of an abrupt quantum point contact we are able to obtain analytic expressions for the scattering eigenfunctions and thus evaluate the resulting conductance corrections.Comment: 19 pages, 7 figure

    A Circuit Model for Domain Walls in Ferromagnetic Nanowires: Application to Conductance and Spin Transfer Torques

    Full text link
    We present a circuit model to describe the electron transport through a domain wall in a ferromagnetic nanowire. The domain wall is treated as a coherent 4-terminal device with incoming and outgoing channels of spin up and down and the spin-dependent scattering in the vicinity of the wall is modelled using classical resistances. We derive the conductance of the circuit in terms of general conductance parameters for a domain wall. We then calculate these conductance parameters for the case of ballistic transport through the domain wall, and obtain a simple formula for the domain wall magnetoresistance which gives a result consistent with recent experiments. The spin transfer torque exerted on a domain wall by a spin-polarized current is calculated using the circuit model and an estimate of the speed of the resulting wall motion is made.Comment: 10 pages, 5 figures; submitted to Physical Review

    Cross-sectional study assessing HIV related knowledge, attitudes and behavior in Namibian public sector employees in capital and regional settings

    Get PDF
    The study objective was to assess the current status of HIV knowledge, attitudes and behavior (KAB) among employees of Namibian ministries. As most HIV campaigning takes place in the capital of Windhoek, an additional aim was to compare Windhoek to four regions (Hardap, Erongo, Oshana, and Caprivi). Between January and March 2011 a cross-sectional survey was conducted in two Namibian ministries, with participants selected randomly from the workforce. Data collection was based on questionnaires. 832 participants were included in the study (51.6% male). Nearly 90% of participants reported to have been tested for HIV before. Knowledge about HIV transmission ranged from 67% to 95% of correct answers, with few differences between the capital and regions. However, a knowledge gap regarding HIV transmission and prevention was seen. In particular, we found significantly lower knowledge regarding transmission from mother-to-child during pregnancy and higher rate of belief in a supernatural role in HIV transmission. In addition, despite many years of HIV prevention activities, a substantial proportion of employees had well-known HIV risk factors including multiple concurrent partnership rates (21%), intergenerational sex (19%), and lower testing rates for men (82% compared to women with 91%)

    Electron Transport through Disordered Domain Walls: Coherent and Incoherent Regimes

    Full text link
    We study electron transport through a domain wall in a ferromagnetic nanowire subject to spin-dependent scattering. A scattering matrix formalism is developed to address both coherent and incoherent transport properties. The coherent case corresponds to elastic scattering by static defects, which is dominant at low temperatures, while the incoherent case provides a phenomenological description of the inelastic scattering present in real physical systems at room temperature. It is found that disorder scattering increases the amount of spin-mixing of transmitted electrons, reducing the adiabaticity. This leads, in the incoherent case, to a reduction of conductance through the domain wall as compared to a uniformly magnetized region which is similar to the giant magnetoresistance effect. In the coherent case, a reduction of weak localization, together with a suppression of spin-reversing scattering amplitudes, leads to an enhancement of conductance due to the domain wall in the regime of strong disorder. The total effect of a domain wall on the conductance of a nanowire is studied by incorporating the disordered regions on either side of the wall. It is found that spin-dependent scattering in these regions increases the domain wall magnetoconductance as compared to the effect found by considering only the scattering inside the wall. This increase is most dramatic in the narrow wall limit, but remains significant for wide walls.Comment: 23 pages, 12 figure

    Scanning gate experiments: from strongly to weakly invasive probes

    Full text link
    An open resonator fabricated in a two-dimensional electron gas is used to explore the transition from strongly invasive scanning gate microscopy to the perturbative regime of weak tip-induced potentials. With the help of numerical simulations that faithfully reproduce the main experimental findings, we quantify the extent of the perturbative regime in which the tip-induced conductance change is unambiguously determined by properties of the unperturbed system. The correspondence between the experimental and numerical results is established by analyzing the characteristic length scale and the amplitude modulation of the conductance change. In the perturbative regime, the former is shown to assume a disorder-dependent maximum value, while the latter linearly increases with the strength of a weak tip potential.Comment: 11 pages, 7 figure

    Influence of nano-mechanical properties on single electron tunneling: A vibrating Single-Electron Transistor

    Full text link
    We describe single electron tunneling through molecular structures under the influence of nano-mechanical excitations. We develop a full quantum mechanical model, which includes charging effects and dissipation, and apply it to the vibrating C60_{60} single electron transistor experiment by Park {\em et al.} {[Nature {\bf 407}, 57 (2000)].} We find good agreement and argue vibrations to be essential to molecular electronic systems. We propose a mechanism to realize negative differential conductance using local bosonic excitations.Comment: 7 pages, 6 figure

    Length-dependent oscillations of the conductance through atomic chains: The importance of electronic correlations

    Full text link
    We calculate the conductance of atomic chains as a function of their length. Using the Density Matrix Renormalization Group algorithm for a many-body model which takes into account electron-electron interactions and the shape of the contacts between the chain and the leads, we show that length-dependent oscillations of the conductance whose period depends on the electron density in the chain can result from electron-electron scattering alone. The amplitude of these oscillations can increase with the length of the chain, in contrast to the result from approaches which neglect the interactions.Comment: 7 pages, 4 figure

    Nuclear spin relaxation probed by a single quantum dot

    Full text link
    We present measurements on nuclear spin relaxation probed by a single quantum dot in a high-mobility electron gas. Current passing through the dot leads to a spin transfer from the electronic to the nuclear spin system. Applying electron spin resonance the transfer mechanism can directly be tuned. Additionally, the dependence of nuclear spin relaxation on the dot gate voltage is observed. We find electron-nuclear relaxation times of the order of 10 minutes

    Level Statistics and Localization for Two Interacting Particles in a Random Potential

    Full text link
    We consider two particles with a local interaction UU in a random potential at a scale L1L_1 (the one particle localization length). A simplified description is provided by a Gaussian matrix ensemble with a preferential basis. We define the symmetry breaking parameter μU2\mu \propto U^{-2} associated to the statistical invariance under change of basis. We show that the Wigner-Dyson rigidity of the energy levels is maintained up to an energy EμE_{\mu}. We find that Eμ1/μE_{\mu} \propto 1/\sqrt{\mu} when Γ\Gamma (the inverse lifetime of the states of the preferential basis) is smaller than Δ2\Delta_2 (the level spacing), and Eμ1/μE_{\mu} \propto 1/\mu when Γ>Δ2\Gamma > \Delta_2. This implies that the two-particle localization length L2L_2 first increases as U|U| before eventually behaving as U2U^2.Comment: 4 pages REVTEX, 4 Figures EPS, UUENCODE

    Spin blockade in ground state resonance of a quantum dot

    Full text link
    We present measurements on spin blockade in a laterally integrated quantum dot. The dot is tuned into the regime of strong Coulomb blockade, confining ~ 50 electrons. At certain electronic states we find an additional mechanism suppressing electron transport. This we identify as spin blockade at zero bias, possibly accompanied by a change in orbital momentum in subsequent dot ground states. We support this by probing the bias, magnetic field and temperature dependence of the transport spectrum. Weak violation of the blockade is modelled by detailed calculations of non-linear transport taking into account forbidden transitions.Comment: 4 pages, 4 figure
    corecore