44 research outputs found

    The <i>Arabidopsis</i> NPF3 protein is a GA transporter

    No full text
    Gibberellins (GAs) are plant hormones that promote a wide range of developmental processes. While GA signalling is well understood, little is known about how GA is transported or how GA distribution is regulated. Here we utilize fluorescently labelled GAs (GA-Fl) to screen for Arabidopsis mutants deficient in GA transport. We show that the NPF3 transporter efficiently transports GA across cell membranes in vitro and GA-Fl in vivo. NPF3 is expressed in root endodermis and repressed by GA. NPF3 is targeted to the plasma membrane and subject to rapid BFA-dependent recycling. We show that abscisic acid (ABA), an antagonist of GA, is also transported by NPF3 in vitro. ABA promotes NPF3 expression and GA-Fl uptake in plants. On the basis of these results, we propose that GA distribution and activity in Arabidopsis is partly regulated by NPF3 acting as an influx carrier and that GA–ABA interaction may occur at the level of transport

    Gibberellin and abscisic acid transporters facilitate endodermal suberin formation in Arabidopsis

    Get PDF
    The plant hormone gibberellin (GA) regulates multiple developmental processes. It accumulates in the root elongating endodermis, but how it moves into this cell file and the significance of this accumulation are unclear. Here we identify three NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER (NPF) transporters required for GA and abscisic acid (ABA) translocation. We demonstrate that NPF2.14 is a subcellular GA/ABA transporter, presumably the first to be identified in plants, facilitating GA and ABA accumulation in the root endodermis to regulate suberization. Further, NPF2.12 and NPF2.13, closely related proteins, are plasma membrane-localized GA and ABA importers that facilitate shoot-to-root GA translocation, regulating endodermal hormone accumulation. This work reveals that GA is required for root suberization and that GA and ABA can act non-antagonistically. We demonstrate how the clade of transporters mediates hormone flow with cell-file-specific vacuolar storage at the phloem unloading zone, and slow release of hormone to induce suberin formation in the maturation zone

    In the Search for Photocages Cleavable with Visible Light: An Overview of Recent Advances and Chemical Strategies

    No full text
    Photopharmacological tools enable the precise spatiotemporal control of small molecule drugs. Amongst them, caged compounds incorporate a photolabile moiety which is released under illumination, thus liberating the active molecule. Caging groups have long been known and many chemical scaffolds have already been used in different applications. However, most of the initial examples are cleaved with UV light, which suffers from low tissue permeability and cell damage. Recently, caging groups that are released under visible light have been reported, which expand their utility. In this review, we outline the chemical strategies that have been used to increase the absorption wavelengths; we compare their photophysical properties, discuss their synthetic accessibility, and exemplify some of their biological applications.Dr L. Josa‐Culleré has received funding from the European Union's Horizon2020 research and innovation programme under the Marie Sklodowska‐Curie grant agreement No 841089. Dr. A. Llebaria is supported by Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación and ERDF‐FEDER European Fund (project CTQ2017‐89222‐R, PCI2018‐093047) and by the Catalan government (2017 SGR 1604).Peer reviewe

    Donor-two-acceptor dye design:a distinct gateway to NIR fluorescence

    No full text
    \u3cp\u3eThe detection of chemical or biological analytes upon molecular reactions relies increasingly on fluorescence methods, and there is a demand for more sensitive, more specific, and more versatile fluorescent molecules. We have designed long wavelength fluorogenic probes with a turn-ON mechanism based on a donor-two-acceptor π-electron system that can undergo an internal charge transfer to form new fluorochromes with longer π-electron systems. Several latent donors and multiple acceptor molecules were incorporated into the probe modular structure to generate versatile dye compounds. This new library of dyes had fluorescence emission in the near-infrared (NIR) region. Computational studies reproduced the observed experimental trends well and suggest factors responsible for high fluorescence of the donor-two-acceptor active form and the low fluorescence observed from the latent form. Confocal images of HeLa cells indicate a lysosomal penetration pathway of a selected dye. The ability of these dyes to emit NIR fluorescence through a turn-ON activation mechanism makes them promising candidate probes for in vivo imaging applications.\u3c/p\u3
    corecore