439 research outputs found
OASIS High-Resolution Integral Field Spectroscopy of the SAURON Ellipticals and Lenticulars
We present a summary of high-spatial resolution follow-up observations of the
elliptical (E) and lenticular (S0) galaxies in the SAURON survey using the
OASIS integral field spectrograph. The OASIS observations explore the central
8x10" regions of these galaxies using a spatial sampling four times higher than
SAURON, often revealing previously undiscovered features. Around 75% (31/48) of
the SAURON E/S0s with central velocity dispersion >= 120 km/s were observed
with OASIS, covering well the original SAURON representative sample. We present
here an overview of this follow-up survey, and some preliminary results on
individual objects, including a previously unreported counter-rotating core in
NGC 4382; the decoupled stellar and gas velocity fields of NGC 2768; and the
strong age gradient towards the centre of NGC 3489.Comment: 4 pages, 5 figures. Accepted for publication in Astron. Nachr. as
refereed proceedings of Euro3D Science Workshop, IoA Cambridge, May 200
Workplace monitoring for exposures to radon and to other natural sources in Europe: integration of monitoring for internal and external exposures
Part of the action of the EURADOS working group (European Radiation Dosimetry Group) on ‘Harmonisation of Individual Monitoring in Europe' was to investigate how the results from personal dosemeters for external radiation, from monitoring for internal exposure and from workplace monitoring, can be combined into a complete and consistent system of individual monitoring. To facilitate this work, the ‘EURADOS questionnaire Q3' relating to radon and other natural sources of radiation in the workplace was distributed to relevant institutes across Europe. A total of 24 countries replied to the questionnaire. This study offers an important overview on actual regulations, national standards and reference levels for protection of employees from radon and other natural sources in different workplace scenarios. Information was also collected on individual monitoring and area monitoring to determine individual doses in workplaces with elevated levels of natural radiation. The article discusses in detail the results obtained showing by country the reference level in workplaces for radon gas and other natural sources. In both instances, exposures in mines, other underground workplaces, industry workplaces/waterworks, offices, schools and day-care homes were considered. The resultant data clearly indicate that there is a need for harmonisation among countries, not least in the areas of regulation and use of reference levels in the workplac
Individual monitoring for internal exposure in Europe and the integration of dosimetric data
The European Radiation Dosimetry Group, EURADOS, established a working group consisting of experts whose aim is to assist in the process of harmonisation of individual monitoring as part of the protection of occupationally exposed workers. A catalogue of facilities and internal dosimetric techniques related to individual monitoring in Europe has been completed as a result of this EURADOS study. A questionnaire was sent in 2002 to services requesting information on various topics including type of exposures, techniques used for direct and indirect measurements including calibration and sensitivity data and the methods employed for the assessment of internal doses. Information relating to Quality Control procedures for direct and indirect measurements, Quality Assurance Programmes in the facilities and legal requirements for ‘approved dosimetric services' were also considered. A total of 71 completed questionnaires were returned by internal dosimetry facilities in 26 countries. This results in an overview of the actual status of the processes used in internal exposure estimation in Europe. In many ways harmonisation is a reality in internal dose assessments, especially when taking into account the measurements of the activity retained or excreted from the body. However, a future study detailing the estimation of minimum detectable activity in the laboratories is highly recommended. Points to focus on in future harmonisation activities are as follows: the process of calculation of doses from measured activity, establishment of guidelines, similar dosimetric tools and application of the same ICRP recommendations. This would lead to a better and more harmonised approach to the estimation of internal exposures in all European facilitie
On the influence of collisional rate coefficients on the water vapour excitation
Water is a key molecule in many astrophysical studies. Its high dipole moment
makes this molecule to be subthermally populated under the typical conditions
of most astrophysical objects. This motivated the calculation of various sets
of collisional rate coefficients (CRC) for HO (with He or H) which are
necessary to model its rotational excitation and line emission. We performed
accurate non--local non--LTE radiative transfer calculations using different
sets of CRC in order to predict the line intensities from transitions that
involve the lowest energy levels of HO (E 900 K). The results obtained
from the different CRC sets are then compared using line intensity ratio
statistics. For the whole range of physical conditions considered in this work,
we obtain that the intensities based on the quantum and QCT CRC are in good
agreement. However, at relatively low H volume density ((H)
10 cm) and low water abundance ((HO) 10), these
physical conditions being relevant to describe most molecular clouds, we find
differences in the predicted line intensities of up to a factor of 3 for
the bulk of the lines. Most of the recent studies interpreting early Herschel
Space Observatory spectra used the QCT CRC. Our results show that although the
global conclusions from those studies will not be drastically changed, each
case has to be considered individually, since depending on the physical
conditions, the use of the QCT CRC may lead to a mis--estimate of the water
vapour abundance of up to a factor of 3
Integration of external and internal dosimetry in Switzerland
Individual monitoring regulations in Switzerland are based on the ICRP60 recommendations. The annual limit of 20 mSv for the effective dose applies to the sum of external and internal radiation. External radiation is monitored monthly or quarterly with TLD, DIS or CR-39 dosemeters by 10 approved external dosimetry services and reported as Hp(10) and Hp(0.07). Internal monitoring is done in two steps. At the workplace, simple screening measurements are done frequently in order to recognise a possible incorporation. If a nuclide dependent activity threshold is exceeded then one of the seven approved dosimetry services for internal radiation does an incorporation measurement to assess the committed effective dose E50. The dosimetry services report all the measured or assessed dose values to the employer and to the National Dose Registry. The employer records the annually accumulated dose values into the individual dose certificate of the occupationally exposed person, both the external dose Hp(10) and the internal dose E50 as well as the total effective dose E = Hp(10)+E50. Based on the national dose registry an annual report on the dosimetry in Switzerland is published which contains the statistics for the total effective dose, as well as separate statistics for external and internal exposur
Individual monitoring for internal exposures in Europe: Conclusions of an EURADOS action
Once the EC Directive 96/29 has been implemented into national regulation across Europe, the coordination of dosimetry laboratories for the monitoring of occupational exposures becomes the principal aim to achieve. Within this framework the European Radiation Dosimetry Group, EURADOS, carried out an Action on ‘Harmonisation of Individual Monitoring' (2000-2004) to promote coordination in the field of individual monitoring of occupational exposures throughout Europe. With reference to internal exposures, the main aims were the completion of a catalogue of internal dosimetry services and an inventory of methods and techniques used for individual monitoring at European internal dosimetry facilities. At the end of this EURADOS Action, a report was published in Radiation Protection Dosimetry in 2004. The information collected related to various topics: the equipments used for the measurement of internal exposures, calibration and sensitivity data, the methods applied for the assessment of internal doses, Quality Control procedures, Quality Assurance Programmes in the facilities and legal requirements. The information to be presented here will give a general overview of the actual status of individual monitoring for internal exposures in Europ
Observations of meteoric material and implications for aerosol nucleation in the winter Arctic lower stratosphere derived from in situ particle measurements
Number concentrations of total and non-volatile aerosol particles with size diameters >0.01 μm as well as particle size distributions (0.4–23 μm diameter) were measured in situ in the Arctic lower stratosphere (10–20.5 km altitude). The measurements were obtained during the campaigns European Polar Stratospheric Cloud and Lee Wave Experiment (EUPLEX) and Envisat-Arctic-Validation (EAV). The campaigns were based in Kiruna, Sweden, and took place from January to March 2003. Measurements were conducted onboard the Russian high-altitude research aircraft Geophysica using the low-pressure Condensation Nucleus Counter COPAS (COndensation PArticle Counter System) and a modified FSSP 300 (Forward Scattering Spectrometer Probe). Around 18–20 km altitude typical total particle number concentrations nt range at 10–20 cm−3 (ambient conditions). Correlations with the trace gases nitrous oxide (N2O) and trichlorofluoromethane (CFC-11) are discussed. Inside the polar vortex the total number of particles >0.01 μm increases with potential temperature while N2O is decreasing which indicates a source of particles in the above polar stratosphere or mesosphere. A separate channel of the COPAS instrument measures the fraction of aerosol particles non-volatile at 250°C. Inside the polar vortex a much higher fraction of particles contained non-volatile residues than outside the vortex (~67% inside vortex, ~24% outside vortex). This is most likely due to a strongly increased fraction of meteoric material in the particles which is transported downward from the mesosphere inside the polar vortex. The high fraction of non-volatile residual particles gives therefore experimental evidence for downward transport of mesospheric air inside the polar vortex. It is also shown that the fraction of non-volatile residual particles serves directly as a suitable experimental vortex tracer. Nanometer-sized meteoric smoke particles may also serve as nuclei for the condensation of gaseous sulfuric acid and water in the polar vortex and these additional particles may be responsible for the increase in the observed particle concentration at low N2O. The number concentrations of particles >0.4 μm measured with the FSSP decrease markedly inside the polar vortex with increasing potential temperature, also a consequence of subsidence of air from higher altitudes inside the vortex. Another focus of the analysis was put on the particle measurements in the lowermost stratosphere. For the total particle density relatively high number concentrations of several hundred particles per cm3 at altitudes below ~14 km were observed in several flights. To investigate the origin of these high number concentrations we conducted air mass trajectory calculations and compared the particle measurements with other trace gas observations. The high number concentrations of total particles in the lowermost stratosphere are probably caused by transport of originally tropospheric air from lower latitudes and are potentially influenced by recent particle nucleation
Recommended from our members
The dichotomous structure of the warm conveyor belt
The warm conveyor belt (WCB) of an extratropical cyclone generally splits into two branches. One branch (WCB1) turns anticyclonically into the downstream upper-level tropospheric ridge, while the second branch (WCB2) wraps cyclonically around the cyclone centre. Here, the WCB split in a typical North Atlantic cold-season cyclone is analysed using two numerical models: the Met Office Unified Model and the COSMO model. The WCB flow is defined using off-line trajectory analysis. The two models represent the WCB split consistently. The split occurs early in the evolution of the WCB with WCB1 experiencing maximum ascent at lower latitudes and with higher moisture content than WCB2. WCB1 ascends abruptly along the cold front where the resolved ascent rates are greatest and there is also line convection. In contrast, WCB2 remains at lower levels for longer before undergoing saturated large-scale ascent over the system's warm front. The greater moisture in WCB1 inflow results in greater net potential temperature change from latent heat release, which determines the final isentropic level of each branch. WCB1 also exhibits lower outflow potential vorticity values than WCB2.
Complementary diagnostics in the two models are utilised to study the influence of individual diabatic processes on the WCB. Total diabatic heating rates along the WCB branches are comparable in the two models with microphysical processes in the large-scale cloud schemes being the major contributor to this heating. However, the different convective parameterisation schemes used by the models cause significantly different contributions to the total heating.
These results have implications for studies on the influence of the WCB outflow in Rossby wave evolution and breaking. Key aspects are the net potential temperature change and the isentropic level of the outflow which together will influence the relative mass going into each WCB branch and the associated negative PV anomalies at the tropopause-level flow
A catalogue of dosemeters and dosimetric services within Europe—an update
The catalogue of dosemeters and dosimetric services within the European Union (EU) Member States and Switzerland that was issued by EURADOS in the year 2000 has been updated and extended with information on dosimetric services in the new EU Member States and Bulgaria, Croatia, Romania, Serbia and Montenegro, and Ukraine. The total number of dosimetric services in these European countries is now estimated to be about 200. The present catalogue is based on information collected from 90 European dosimetric services, among which 34 questionnaires from 32 services were obtained over the years 2001-2004 for the first time. This article assesses and updates the present use of personal dosemeters and the extent to which occupationally exposed persons in Europe are monitored with dosemeters able to measure the operational quantity—personal dose equivalent, HP(d). The perspective of joining EU by the new countries accelerated the implementation of the EU Basic Safety Standard Directive to their national regulations. As a result, all newly investigated services reported their ability to measure HP(d). The catalogue provides information on the dosemeters, dose calculation and background subtraction algorithms, calibration methods, energy and angular response, and performanc
Extremely high velocity gas from the massive YSOs in IRAS 17233-3606
Molecular outflows from high-mass young stellar objects provide an excellent
way to study the star formation process, and investigate if they are scaled-up
versions of their low-mass counterparts. We selected the nearby massive star
forming region IRAS 17233-3606 in order to study the kinematics and physics
along the molecular outflow(s) originating from this source. We observed IRAS
17233-3606 in CO, a typical tracer of gas associated with molecular outflow,
with the Submillimeter Array in the (2-1) transition, and with the APEX
telescope in the higher excitation (6-5) line. Additional infrared H2
observations were performed with the UKIRT telescope. The CO data were analysed
using a LVG approach. Our data resolve the previously detected molecular
outflow in at least three different components, one of them with a high
collimation factor ~4, and characterised by emission at extremely high
velocities (|v-v_{LSR}|>120 km s^{-1}). The estimate of the kinematical outflow
parameters are typical of massive YSOs, and in agreement with the measured
bolometric luminosity of the source. The kinematic ages of the flows are in the
range 10^2-10^3 yr, and therefore point to young objects that still did not
reach the main sequence.Comment: accepted for publication in A&
- …
