614 research outputs found
THE STRUGGLE FOR BROADBAND IN RURAL AMERICA
Broadband, Digital Divide, Economic Development, Infrastructure, Rural Development, Community/Rural/Urban Development, Research and Development/Tech Change/Emerging Technologies, L96, R11, R58,
High resolution nighttime cloud-cover radiometer Quarterly report XVII, 1 Oct. 1965 - 1 Jan. 1966
Electronic, optical, mechanical, and electron packaging component and system design reviews for high resolution cloud cover infrared radiomete
Low Pt content direct methanol fuel cell anode catalyst: nanophase PtRuNiZr
A method for the preparation of a metallic material having catalytic activity that includes synthesizing a material composition comprising a metal content with a lower Pt content than a binary alloy containing Pt but that displays at least a comparable catalytic activity on a per mole Pt basis as the binary alloy containing Pt; and evaluating a representative sample of the material composition to ensure that the material composition displays a property of at least a comparable catalytic activity on a per mole Pt basis as a representative binary alloy containing Pt. Furthermore, metallic compositions are disclosed that possess substantial resistance to corrosive acids
Nanocomposite Photoelectrochemical Cells
Improved, solid-state photoelectrochemical cells for converting solar radiation to electricity have been proposed. (In general, photoelectrochemical cells convert incident light to electricity through electrochemical reactions.) It is predicted that in comparison with state-of-the-art photoelectrochemical cells, these cells will be found to operate with greater solar-to-electric energy-conversion efficiencies
Reversible Intercalation of Fluoride-Anion Receptor Complexes in Graphite
We have demonstrated a route to reversibly intercalate fluoride-anion receptor complexes in graphite via a nonaqueous electrochemical process. This approach may find application for a rechargeable lithium–fluoride dual-ion intercalating battery with high specific energy. The cell chemistry presented here uses graphite cathodes with LiF dissolved in a nonaqueous solvent through the aid of anion receptors. Cells have been demonstrated with reversible cathode specific capacity of approximately 80 mAh/g at discharge plateaus of upward of 4.8 V, with graphite staging of the intercalant observed via in situ synchrotron X-ray diffraction during charging. Electrochemical impedance spectroscopy and 11B nuclear magnetic resonance studies suggest that co-intercalation of the anion receptor with the fluoride occurs during charging, which likely limits the cathode specific capacity. The anion receptor type dictates the extent of graphite fluorination, and must be further optimized to realize high theoretical fluorination levels. To find these optimal anion receptors, we have designed an ab initio calculations-based scheme aimed at identifying receptors with favorable fluoride binding and release properties
Degeneracy: a link between evolvability, robustness and complexity in biological systems
A full accounting of biological robustness remains elusive; both in terms of the mechanisms by which robustness is achieved and the forces that have caused robustness to grow over evolutionary time. Although its importance to topics such as ecosystem services and resilience is well recognized, the broader relationship between robustness and evolution is only starting to be fully appreciated. A renewed interest in this relationship has been prompted by evidence that mutational robustness can play a positive role in the discovery of adaptive innovations (evolvability) and evidence of an intimate relationship between robustness and complexity in biology.
This paper offers a new perspective on the mechanics of evolution and the origins of complexity, robustness, and evolvability. Here we explore the hypothesis that degeneracy, a partial overlap in the functioning of multi-functional components, plays a central role in the evolution and robustness of complex forms. In support of this hypothesis, we present evidence that degeneracy is a fundamental source of robustness, it is intimately tied to multi-scaled complexity, and it establishes conditions that are necessary for system evolvability
Networked buffering: a basic mechanism for distributed robustness in complex adaptive systems
A generic mechanism - networked buffering - is proposed for the generation of robust traits in complex systems. It requires two basic conditions to be satisfied: 1) agents are versatile enough to perform more than one single functional role within a system and 2) agents are degenerate, i.e. there exists partial overlap in the functional capabilities of agents. Given these prerequisites, degenerate systems can readily produce a distributed systemic response to local perturbations. Reciprocally, excess resources related to a single function can indirectly support multiple unrelated functions within a degenerate system. In models of genome:proteome mappings for which localized decision-making and modularity of genetic functions are assumed, we verify that such distributed compensatory effects cause enhanced robustness of system traits. The conditions needed for networked buffering to occur are neither demanding nor rare, supporting the conjecture that degeneracy may fundamentally underpin distributed robustness within several biotic and abiotic systems. For instance, networked buffering offers new insights into systems engineering and planning activities that occur under high uncertainty. It may also help explain recent developments in understanding the origins of resilience within complex ecosystems. \ud
\u
Differential requirements for actin during yeast and mammalian endocytosis
Key features of clathrin-mediated endocytosis have been conserved across evolution. However, endocytosis in Saccharomyces cerevisiae is completely dependent on a functional actin cytoskeleton, whereas actin appears to be less critical in mammalian cell endocytosis. We reveal that the fundamental requirement for actin in the early stages of yeast endocytosis is to provide a strong framework to support the force generation needed to direct the invaginating plasma membrane into the cell against turgor pressure. By providing osmotic support, pressure differences across the plasma membrane were removed and this reduced the requirement for actin-bundling proteins in normal endocytosis. Conversely, increased turgor pressure in specific yeast mutants correlated with a decreased rate of endocytic patch invagination
P. falciparum and P. vivax Epitope-Focused VLPs Elicit Sterile Immunity to Blood Stage Infections
In order to design P. falciparum preerythrocytic vaccine candidates, a library of circumsporozoite (CS) T and B cell epitopes displayed on the woodchuck hepatitis virus core antigen (WHcAg) VLP platform was produced. To test the protective efficacy of the WHcAg-CS VLPs, hybrid CS P. berghei/P. falciparum (Pb/Pf) sporozoites were used to challenge immunized mice. VLPs carrying 1 or 2 different CS repeat B cell epitopes and 3 VLPs carrying different CS non-repeat B cell epitopes elicited high levels of anti-insert antibodies (Abs). Whereas, VLPs carrying CS repeat B cell epitopes conferred 98% protection of the liver against a 10,000 Pb/Pf sporozoite challenge, VLPs carrying the CS non-repeat B cell eptiopes were minimally-to-non-protective. One-to-three CS-specific CD4/CD8 T cell sites were also fused to VLPs, which primed CS-specific as well as WHcAg-specific T cells. However, a VLP carrying only the 3 T cell domains failed to protect against a sporozoite challenge, indicating a requirement for anti-CS repeat Abs. A VLP carrying 2 CS repeat B cell epitopes and 3 CS T cell sites in alum adjuvant elicited high titer anti-CS Abs (endpoint dilution titer \u3e1x106) and provided 80–100% protection against blood stage malaria. Using a similar strategy, VLPs were constructed carrying P. vivax CS repeat B cell epitopes (WHc-Pv-78), which elicited high levels of anti-CS Abs and conferred 99% protection of the liver against a 10,000 Pb/Pv sporozoite challenge and elicited sterile immunity to blood stage infection. These results indicate that immunization with epitope-focused VLPs carrying selected B and T cell epitopes from the P.falciparum and P. vivax CS proteins can elicit sterile immunity against blood stage malaria. Hybrid WHcAg-CS VLPs could provide the basis for a bivalent P. falciparum/P. vivax malaria vaccine
Sex-specific regulation of chemokine Cxcl5/6 controls neutrophil recruitment and tissue injury in acute inflammatory states
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Barts and The London Trustees Studentship (SM), Marie Curie fellowships (MB, JD), Arthritis Research UK career development fellowship (JW), William Harvey Research Foundation grant (JW/RSS), Kidney Research UK fellowship (NSAP), Barts and The London Vacation Scholarship (ISN), Wellcome Trust senior fellowship (DWG), and a Wellcome Trust career development fellowship (RSS). This work forms part of the research themes contributing to the translational research portfolio of Barts and The London Cardiovascular Biomedical Research Unit, which is supported and funded by National Institute for Health Researc
- …
