944 research outputs found
Application of a transonic potential flow code to the static aeroelastic analysis of three-dimensional wings
Since the aerodynamic theory is nonlinear, the method requires the coupling of two iterative processes - an aerodynamic analysis and a structural analysis. A full potential analysis code, FLO22, is combined with a linear structural analysis to yield aerodynamic load distributions on and deflections of elastic wings. This method was used to analyze an aeroelastically-scaled wind tunnel model of a proposed executive-jet transport wing and an aeroelastic research wing. The results are compared with the corresponding rigid-wing analyses, and some effects of elasticity on the aerodynamic loading are noted
Time-marching transonic flutter solutions including angle-of-attack effects
Transonic aeroelastic solutions based upon the transonic small perturbation potential equation were studied. Time-marching transient solutions of plunging and pitching airfoils were analyzed using a complex exponential modal identification technique, and seven alternative integration techniques for the structural equations were evaluated. The HYTRAN2 code was used to determine transonic flutter boundaries versus Mach number and angle-of-attack for NACA 64A010 and MBB A-3 airfoils. In the code, a monotone differencing method, which eliminates leading edge expansion shocks, is used to solve the potential equation. When the effect of static pitching moment upon the angle-of-attack is included, the MBB A-3 airfoil can have multiple flutter speeds at a given Mach number
Scaling in many-body systems and proton structure function
The observation of scaling in processes in which a weakly interacting probe
delivers large momentum to a many-body system simply reflects the
dominance of incoherent scattering off target constituents. While a suitably
defined scaling function may provide rich information on the internal dynamics
of the target, in general its extraction from the measured cross section
requires careful consideration of the nature of the interaction driving the
scattering process. The analysis of deep inelastic electron-proton scattering
in the target rest frame within standard many-body theory naturally leads to
the emergence of a scaling function that, unlike the commonly used structure
functions and , can be directly identified with the intrinsic proton
response.Comment: 11 pages, 4 figures. Proceedings of the 11th Conference on Recent
Progress in Many-Body Theories, Manchester, UK, July 9-13 200
An exploratory study of finite difference grids for transonic unsteady aerodynamics
Unsteady aerodynamic forces are calculated by the XTRAN2L finite difference program which solves the complete two dimensional unsteady transonic small perturbation equation. The unsteady forces are obtained using a pulse transfer function technique which assumes the flow field behaves in a locally linear fashion about a mean condition. Forces are calculated for a linear flat plate using the default grids from the LTRAN2-NLR, LTRAN2-HI, and XTRAN3S programs. The forces are compared to the exact theoretical values for flat plate, and grid generated boundary and internal numerical reflections are observed to cause significant errors in the unsteady airloads. Grids are presented that alleviate the reflections while reducing computational time up to fifty-three percent and program size up to twenty-eight percent. Forces are presented for a six percent thick parabolic arc airfoil which demonstrate that the transform technique may be successfully applied to nonlinear transonic flows
Global perspective of nitrate flux in ice cores
The relationships between the concentration and the flux of chemical species (Cl-, NO3 - , SO42-, Na +, K + , NH4 + , Mg 2+ , Ca 2+) versus snow accumulation rate were examined at GISP2 and 20D in Greenland, Mount Logan from the St. Elias Range, Yukon Territory, Canada, and Sentik Glacier from the northwest end of the Zanskar Range in the Indian Himalayas. At all sites, only nitrate flux is significantly (a = 0.05) related to snow accumulation rate. Of all the chemical series, only nitrate concentration data are normally distributed. Therefore we suggest that nitrate concentration in snow is affected by postdepositionaJ exchange with the atmosphere over a broad range of environmental conditions. The persistent summer maxima in nitrate observed in Greenland snow over the entire range of record studied (the last 800 years) may be mainly due to NO• released from peroxyacetyl nitrate by thermal decomposition in the presence of higher OH concentrations in summer. The late winter/early spring nitrate peak observed in modern Greenland snow may be related to the buildup of anthropogenically derived N Oy in the Arctic troposphere during the long polar winter
NASA research in supersonic propulsion: A decade of progress
A second generation, economically viable, and environmentally acceptable supersonic aircraft is reviewed. Engine selection, testbed experiments, and noise reduction research are described
Climatic impact of the A.D. 1783 Asama (Japan) Eruption was minimal: Evidence from the GISP2 Ice Core
Assessing the climatic impact of the A.D. 1783 eruption of Mt. Asama, Japan, is complicated by the concurrent eruption of Laki, Iceland. Estimates of the stratospheric loading of H2SO4 for the A.D. 1108 eruption of Asama derived from the SO42− time series in the GISP2 Greenland ice core indicate a loading of about 10.4 Tg H2SO4 with a resulting stratospheric optical depth of 0.087. Assuming sulfur emissions from the 1783 eruption were only one‐third of the 1108 event yields a H2SO4 loading value of 3.5 Tg and a stratospheric optical depth of only 0.029. These results suggest minimal climatic effects in the Northern Hemisphere from the 1783 Asama eruption, thus any volcanically‐induced cooling in the mid‐1780s is probably due to the Laki eruption
Influence of Collision Cascade Statistics on Pattern Formation of Ion-Sputtered Surfaces
Theoretical continuum models that describe the formation of patterns on
surfaces of targets undergoing ion-beam sputtering, are based on Sigmund's
formula, which describes the spatial distribution of the energy deposited by
the ion. For small angles of incidence and amorphous or polycrystalline
materials, this description seems to be suitable, and leads to the classic BH
morphological theory [R.M. Bradley and J.M.E. Harper, J. Vac. Sci. Technol. A
6, 2390 (1988)]. Here we study the sputtering of Cu crystals by means of
numerical simulations under the binary-collision approximation. We observe
significant deviations from Sigmund's energy distribution. In particular, the
distribution that best fits our simulations has a minimum near the position
where the ion penetrates the surface, and the decay of energy deposition with
distance to ion trajectory is exponential rather than Gaussian. We provide a
modified continuum theory which takes these effects into account and explores
the implications of the modified energy distribution for the surface
morphology. In marked contrast with BH's theory, the dependence of the
sputtering yield with the angle of incidence is non-monotonous, with a maximum
for non-grazing incidence angles.Comment: 12 pages, 13 figures, RevTe
Greenland ice core “signal” characteristics: An expanded view of climate change
The last millenium of Earth history is of particular interest because it documents the environmental complexities of both natural variability and anthropogenic activity. We have analyzed the major ions contained in the Greenland Ice Sheet Project 2 (GISP 2) ice core from the present to ∼674 A.D. to yield an environmental reconstruction for this period that includes a description of nitrogen and sulfur cycling, volcanic emissions, sea salt and terrestrial influences. We have adapted and extended mathematical procedures for extracting sporadic (e.g., volcanic) events, secular trends, and periodicities found in the data sets. Finally, by not assuming that periodic components (signals) were “stationary” and by utilizing evolutionary spectral analysis, we were able to reveal periodic processes in the climate system which change in frequency, “turn on,” and “turn off” with other climate transitions such as\u27that between the little ice age and the medieval warm period
Parton distribution functions from the precise NNLO QCD fit
We report the parton distribution functions (PDFs) determined from the NNLO
QCD analysis of the world inclusive DIS data with account of the precise NNLO
QCD corrections to the evolution equations kernel. The value of strong coupling
constant \alpha_s^{NNLO}(M_Z)=0.1141(14), in fair agreement with one obtained
using the earlier approximate NNLO kernel by van Neerven-Vogt. The intermediate
bosons rates calculated in the NNLO using obtained PDFs are in agreement to the
latest Run II results.Comment: 8 pages, LATEX, 2 figures (EPS
- …
