953 research outputs found
Corrosion behaviour of nitrided ferritic stainless steels for use in solid oxide fuel cell devices
Plasma nitriding was applied to ferritic stainless steel substrates to improve their performances as interconnects for solid oxide fuel cell devices. The samples underwent electrical conductivity test and SEM/EDS, TEM/EDS, environmental-SEM analyses. The first stages of corrosion were recorded in-situ with the e-SEM. Nitriding is effective in limiting the undesired chromium evaporation from the steel substrates and accelerates the corrosion kinetics, but its influence of the electrical conductivity is ambiguous. No intergranular corrosion is found in the steel substrate after long time operation. Nitriding helps commercially competitive porous coating to improve chromium retention properties of metal interconnects
The Dynamics of Internet Traffic: Self-Similarity, Self-Organization, and Complex Phenomena
The Internet is the most complex system ever created in human history.
Therefore, its dynamics and traffic unsurprisingly take on a rich variety of
complex dynamics, self-organization, and other phenomena that have been
researched for years. This paper is a review of the complex dynamics of
Internet traffic. Departing from normal treatises, we will take a view from
both the network engineering and physics perspectives showing the strengths and
weaknesses as well as insights of both. In addition, many less covered
phenomena such as traffic oscillations, large-scale effects of worm traffic,
and comparisons of the Internet and biological models will be covered.Comment: 63 pages, 7 figures, 7 tables, submitted to Advances in Complex
System
Site-specific ionisation edge fine-structure of Rutile in the electron microscope
Combined Bloch-wave and density functional theory simulations are performed to investigate the effects of different channelling conditions on the fine-structure of electron energy-loss spectra. The simulated spectra compare well with experiments. Furthermore, we demonstrate that using this technique, the site-specific investigation of atomic orbitals is possible. This opens new possibilities for chemical analyses
Cascade-based attacks on complex networks
We live in a modern world supported by large, complex networks. Examples
range from financial markets to communication and transportation systems. In
many realistic situations the flow of physical quantities in the network, as
characterized by the loads on nodes, is important. We show that for such
networks where loads can redistribute among the nodes, intentional attacks can
lead to a cascade of overload failures, which can in turn cause the entire or a
substantial part of the network to collapse. This is relevant for real-world
networks that possess a highly heterogeneous distribution of loads, such as the
Internet and power grids. We demonstrate that the heterogeneity of these
networks makes them particularly vulnerable to attacks in that a large-scale
cascade may be triggered by disabling a single key node. This brings obvious
concerns on the security of such systems.Comment: 4 pages, 4 figures, Revte
The influence of intercalated oxygen on the properties of graphene on polycrystalline Cu under various environmental conditions.
Intercalation of oxygen at the interface of graphene grown by chemical vapour deposition and its polycrystalline copper catalyst can have a strong impact on the electronic, chemical and structural properties of both the graphene and the Cu. This can affect the oxidation resistance of the metal as well as subsequent graphene transfer. Here, we show, using near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS), X-ray absorption near edge spectroscopy (XANES), energy dispersive X-ray spectroscopy (EDX) and (environmental) scanning electron microscopy (ESEM) that both the oxygen intercalation and de-intercalation are kinetically driven and can be clearly distinguished from carbon etching. The obtained results reveal that a charge transfer between as grown graphene and Cu can be annulled by intercalating oxygen creating quasi-free-standing graphene. This effect is found to be reversible on vacuum annealing proceeding via graphene grain boundaries and defects within the graphene but not without loss of graphene by oxidative etching for repeated (de-)intercalation cycles.P.R.K.
acknowledges the Lindemann Trust Fellowship. R.S.W.
acknowledges a Research Fellowship from St. John’s College,
Cambridge. S.H. acknowledges funding from ERC grant InsituNANO
(No. 279342) and EPSRC under grant GRAPHTED
(Ref. EP/K016636/1). R.B. and A.K.-G. acknowledge funding
from EU project GRAFOL, grant 285275.This is the final published version. It first appeared at http://pubs.rsc.org/en/Content/ArticleLanding/2014/CP/c4cp04025b#!divAbstract
Statistical mechanics of complex networks
Complex networks describe a wide range of systems in nature and society, much
quoted examples including the cell, a network of chemicals linked by chemical
reactions, or the Internet, a network of routers and computers connected by
physical links. While traditionally these systems were modeled as random
graphs, it is increasingly recognized that the topology and evolution of real
networks is governed by robust organizing principles. Here we review the recent
advances in the field of complex networks, focusing on the statistical
mechanics of network topology and dynamics. After reviewing the empirical data
that motivated the recent interest in networks, we discuss the main models and
analytical tools, covering random graphs, small-world and scale-free networks,
as well as the interplay between topology and the network's robustness against
failures and attacks.Comment: 54 pages, submitted to Reviews of Modern Physic
Large Scale Cross-Correlations in Internet Traffic
The Internet is a complex network of interconnected routers and the existence
of collective behavior such as congestion suggests that the correlations
between different connections play a crucial role. It is thus critical to
measure and quantify these correlations. We use methods of random matrix theory
(RMT) to analyze the cross-correlation matrix C of information flow changes of
650 connections between 26 routers of the French scientific network `Renater'.
We find that C has the universal properties of the Gaussian orthogonal ensemble
of random matrices: The distribution of eigenvalues--up to a rescaling which
exhibits a typical correlation time of the order 10 minutes--and the spacing
distribution follow the predictions of RMT. There are some deviations for large
eigenvalues which contain network-specific information and which identify
genuine correlations between connections. The study of the most correlated
connections reveals the existence of `active centers' which are exchanging
information with a large number of routers thereby inducing correlations
between the corresponding connections. These strong correlations could be a
reason for the observed self-similarity in the WWW traffic.Comment: 7 pages, 6 figures, final versio
Stochastic evolution equations driven by Liouville fractional Brownian motion
Let H be a Hilbert space and E a Banach space. We set up a theory of
stochastic integration of L(H,E)-valued functions with respect to H-cylindrical
Liouville fractional Brownian motions (fBm) with arbitrary Hurst parameter in
the interval (0,1). For Hurst parameters in (0,1/2) we show that a function
F:(0,T)\to L(H,E) is stochastically integrable with respect to an H-cylindrical
Liouville fBm if and only if it is stochastically integrable with respect to an
H-cylindrical fBm with the same Hurst parameter. As an application we show that
second-order parabolic SPDEs on bounded domains in \mathbb{R}^d, driven by
space-time noise which is white in space and Liouville fractional in time with
Hurst parameter in (d/4,1) admit mild solution which are H\"older continuous
both and space.Comment: To appear in Czech. Math.
- …
