1,310 research outputs found
Resolving the chemistry in the disk of TW Hydrae I. Deuterated species
We present Submillimeter Array (SMA) observations of several deuterated
species in the disk around the classical T Tauri star TW Hydrae at arcsecond
scales, including detections of the DCN J=3-2 and DCO+ J=3-2 lines, and upper
limits to the HDO 3(1,2)-2(2,1), ortho-H2D+ 1(1,0)-1(1,1) and para-D2H+
1(1,0)-1(0,1) transitions. We also present observations of the HCN J=3-2, HCO+
J=3-2 and H13CO+ J=4-3 lines for comparison with their deuterated
isotopologues. We constrain the radial and vertical distributions of various
species in the disk by fitting the data using a model where the molecular
emission from an irradiated accretion disk is sampled with a 2D Monte Carlo
radiative transfer code. We find that the distribution of DCO+ differs markedly
from that of HCO+. The D/H ratios inferred change by at least one order of
magnitude (0.01 to 0.1) for radii 70 AU and there is a rapid falloff
of the abundance of DCO+ at radii larger than 90 AU. Using a simple analytical
chemical model, we constrain the degree of ionization, x(e-)=n(e-)/n(H2), to be
~10^-7 in the disk layer(s) where these molecules are present. Provided the
distribution of DCN follows that of HCN, the ratio of DCN to HCN is determined
to be 1.7\pm0.5 \times 10^-2; however, this ratio is very sensitive to the
poorly constrained vertical distribution of HCN. The resolved radial
distribution of DCO+ indicates that {\it in situ} deuterium fractionation
remains active within the TW Hydrae disk and must be considered in the
molecular evolution of circumstellar accretion disks.Comment: 12 pages, 12 figures, accepted to Ap
Interferometric Upper Limits on Millimeter Polarization of the Disks around DG Tau, GM Aur, and MWC 480
Millimeter-wavelength polarization measurements offer a promising method for
probing the geometry of magnetic fields in circumstellar disks. Single dish
observations and theoretical work have hinted that magnetic field geometries
might be predominantly toroidal, and that disks should exhibit millimeter
polarization fractions of 2-3%. While subsequent work has not confirmed these
high polarization fractions, either the wavelength of observation or the target
sources differed from the original observations. Here we present new
polarimetric observations of three nearby circumstellar disks at 2" resolution
with the Submillimeter Array (SMA) and the Combined Array for Research in
Millimeter Astronomy (CARMA). We reobserve GM Aur and DG Tau, the systems in
which millimeter polarization detections have been claimed. Despite higher
resolution and sensitivity at wavelengths similar to the previous observations,
the new observations do not show significant polarization. We also add
observations of a new HAeBe system, MWC 480. These observations demonstrate
that a very low (100
AU) scales in bright circumstellar disks. We suggest that high-resolution
observations may be worthwhile to probe magnetic field structure on linear
distances smaller than the disk scale height, as well as in regions closer to
the star that may have larger MRI-induced magnetic field strengths.Comment: 7 pages, 3 figures, accepted for publication in A
Increased HCO production in the outer disk around HD 163296
Three formaldehyde lines were observed (HCO 3--2, HCO
3--2, and HCO 3--2) in the protoplanetary disk
around the Herbig Ae star HD 163296 with ALMA at 0.5 arcsecond (60 AU) spatial
resolution. HCO 3--2 was readily detected via imaging, while
the weaker HCO 3--2 and HCO 3--2 lines
required matched filter analysis to detect. HCO is present throughout most
of the gaseous disk, extending out to 550 AU. An apparent 50 AU inner radius of
the HCO emission is likely caused by an optically thick dust continuum. The
HCO radial intensity profile shows a peak at 100 AU and a secondary bump at
around 300 AU, suggesting increased production in the outer disk. Different
parameterizations of the HCO abundance were compared to the observed
visibilities with minimization, using either a characteristic
temperature, a characteristic radius or a radial power law index to describe
the HCO chemistry. Similar models were applied to ALMA Science Verification
data of CO. In all modeling scenarios, fits to the HCO data show an
increased abundance in the outer disk. The overall best-fit HCO model shows
a factor of two enhancement beyond a radius of 27020 AU, with an inner
abundance of . The HCO emitting region has a lower
limit on the kinetic temperature of K. The CO modeling suggests
an order of magnitude depletion in the outer disk and an abundance of in the inner disk. The increase in HCO outer disk emission
could be a result of hydrogenation of CO ices on dust grains that are then
sublimated via thermal desorption or UV photodesorption, or more efficient
gas-phase production beyond about 300 AU if CO is photodisocciated in this
region
A Resolved Molecular Gas Disk around the Nearby A Star 49 Ceti
The A star 49 Ceti, at a distance of 61 pc, is unusual in retaining a
substantial quantity of molecular gas while exhibiting dust properties similar
to those of a debris disk. We present resolved observations of the disk around
49 Ceti from the Submillimeter Array in the J=2-1 rotational transition of CO
with a resolution of 1.0x1.2 arcsec. The observed emission reveals an extended
rotating structure viewed approximately edge-on and clear of detectable CO
emission out to a distance of ~90 AU from the star. No 1.3 millimeter continuum
emission is detected at a 3-sigma sensitivity of 2.1 mJy/beam. Models of disk
structure and chemistry indicate that the inner disk is devoid of molecular
gas, while the outer gas disk between 40 and 200 AU from the star is dominated
by photochemistry from stellar and interstellar radiation. We determine
parameters for a model that reproduces the basic features of the spatially
resolved CO J=2-1 emission, the spectral energy distribution, and the
unresolved CO J=3-2 spectrum. We investigate variations in disk chemistry and
observable properties for a range of structural parameters. 49 Ceti appears to
be a rare example of a system in a late stage of transition between a gas-rich
protoplanetary disk and a tenuous, virtually gas-free debris disk.Comment: 11 pages, 6 figures, accepted for publication in Ap
- …
