32,910 research outputs found
Element-specific modal formulations for large-displacement multibody dynamics
Large dispacement assumed-mode modeling techniques are examined in the context of multibody elastodynamics. The range of both general and element-specific approaches are studied with the aid of examples involving beams, plates, and shells. For systems undergoing primarily structural bending and twisting with little or no membrane distortion, it is found that fully-linear, element-specific, modal formulations provide the most accurate time history solutions at the least expense. When membrane effects become dominant in structural problems due to loading and boundary conditions, one must naturally resort to a formulation involving a nonlinear stress-strain relationship in addition to nonlinear terms associated with large overall system motion. Such nonlinear models were investigated using assumed modes and found to lead to modal convergence difficulties when standard free-free structural modes are employed. A constrained mode formulation aimed at addressing the convergence problem is proposed
A call for the aggressive treatment of oligometastatic and oligo-recurrent non-small cell lung cancer.
Metastatic non-small cell lung cancer (NSCLC) carries a dismal prognosis. Clinical evidence suggests the existence of an intermediate, or oligometastatic, state when metastases are limited in number and/or location. In addition, following initial curative therapy, many patients present with limited metastatic disease, or oligo-recurrence. Metastasis-directed, anti-cancer therapies may benefit these patients. A growing evidence-base supports the use of hypofractionated, image-guided radiotherapy (HIGRT) for a variety of malignant conditions including inoperable stage I NSCLC and many metastatic sites. When surgical resection is not possible, HIGRT offers an effective alternative for local treatment of limited metastatic disease. Early studies have produced promising results when HIGRT was delivered to all known sites of disease in patients with oligometastatic/oligo-recurrent NSCLC. In a population of patients formerly considered rapidly terminal, these studies report five year overall survival rates of 13-22%. HIGRT for metastatic NSCLC warrants further study. We call for large, intergroup, and even international randomized trials incorporating HIGRT and other metastasis-directed therapies into the treatment of patients with oligometastatic/oligo-recurrent NSCLC
Impact of surface roughness in nanogap plasmonic systems
Recent results have shown unprecedented control over separation distances
between two metallic elements hundreds of nanometers in size, underlying the
effects of free-electron nonlocal response also at mid-infrared wavelengths.
Most of metallic systems however, still suffer from some degree of
inhomogeneity due to fabrication-induced surface roughness. Nanoscale roughness
in such systems might hinder the understanding of the role of microscopic
interactions. Here we investigate the effect of surface roughness in coaxial
nanoapertures resonating at mid-infrared frequencies. We show that although
random roughness shifts the resonances in an unpredictable way, the impact of
nonlocal effects can still be clearly observed. Roughness-induced perturbation
on the peak resonance of the system shows a strong correlation with the
effective gap size of the individual samples. Fluctuations due to fabrication
imperfections then can be suppressed by performing measurements on structure
ensembles in which averaging over a large number of samples provides a precise
measure of the ideal system's optical properties
On the modeling of low-Reynolds-number turbulence
A full Reynolds-stress closure that is capable of describing the flow all the way to the wall was formulated for turbulent flow through circular pipe. Since viscosity does not appear explicitly in the pressure redistribution terms, conventional high-number models for these terms are found to be applicable. However, the models for turbulent diffusion and viscous dissipation have to be modified to account for viscous diffusion near a wall. Two redistribution and two diffusion models are investigated for their effects on the model calculations. Wall correction to pressure redistribution modeling is also examined. Diffusion effects on calculated turbulent properties are further investigated by simplifying the transport equations to algebraic equations for Reynolds stress. Two approximations are explored. These are the equilibrium and nonequilibrium turbulence assumptions. Finally, the two-equation closure is also used to calculate the flow in question and the results compared with all the other model calculations. Fully developed pipe flows at two moderate Reynolds numbers are used to validate these model calculations
Correlation between fracture surface morphology and toughness in Zr-based bulk metallic glasses
Fracture surfaces of Zr-based bulk metallic glasses of various compositions tested in the as-cast and annealed conditions were analyzed using scanning electron microscopy. The tougher samples have shown highly jagged patterns at the beginning stage of crack propagation, and the length and roughness of this jagged pattern correlate well with the measured fracture toughness values. These jagged patterns, the main source of energy dissipation in the sample, are attributed to the formation of shear bands inside the sample. This observation provides strong evidence of significant “plastic zone” screening at the crack tip
Lensing reconstruction of cluster-mass cross-correlation with cosmic microwave background polarization
We extend our maximum likelihood method for reconstructing the cluster-mass
cross-correlation from cosmic microwave background (CMB) temperature
anisotropies and develop new estimators that utilize six different quadratic
combinations of CMB temperature and polarization fields. Our maximum likelihood
estimators are constructed with delensed CMB temperature and polarization
fields by using an assumed model of the convergence field and they can be
iteratively applied to a set of clusters, approaching to the optimal condition
for the lensing reconstruction as the assumed initial model is refined. Using
smoothed particle hydrodynamics simulations, we create a catalog of realistic
clusters obtainable from the current Sunyaev-Zel'dovich (SZ) surveys, and we
demonstrate the ability of the maximum likelihood estimators to reconstruct the
cluster-mass cross-correlation from the massive clusters. The iTT temperature
estimator provides a signal-to-noise ratio of a factor 3 larger than the iEB
polarization estimator, unless the detector noise for measuring polarization
anisotropies is controlled under 3 microK.Comment: 10 pages, 6 figures, accepted for publication in Physical Review
- …
