8,784 research outputs found
Nonequilibrium transport and population inversion in double quantum dot systems
We present a microscopic theory for both equilibrium and nonequilibrium
transport properties of coupled double quantum dots (DQD). A general formula
for current tunneling through the DQD is derived by the nonequilibrium Green's
function method. Using a Hartree-Fock approach, effects of multi-level coupling
and nonequilibrium electron distributions in resonant tunneling are considered.
We find that the peak in the resonant tunneling current through two symmetric
dots will split only when the inter-dot coupling is stronger than dot-lead
coupling. We predict that population inversion can be achieved in one dot in
the nonequilibrium regime.Comment: 19 pages, RevTex. 3 Figures included, to be published in Int. J. Mod.
Phys.
5MW Power Upgrade Studies of the ISIS TS1 Target
The increasing demand for neutron production at the ISIS neutron spallation source has motivated a study of an upgrade of the production target TS1. This study focuses on a 5 MW power upgrade and complete redesign of the ISIS TS1 spallation target, reflector and neutron moderators. The optimisation of the target-moderator arrangement was done in order to obtain the maximum neutron output per unit input power. In addition, at each step of this optimisation study, the heat load and thermal stresses were calculated to ensure the target can sustain the increase in the beam power
Low Temperature Magnetic Properties of the Double Exchange Model
We study the {\it ferromagnetic} (FM) Kondo lattice model in the strong
coupling limit (double exchange (DE) model). The DE mechanism proposed by Zener
to explain ferromagnetism has unexpected properties when there is more than one
itinerant electron. We find that, in general, the many-body ground state of the
DE model is {\it not} globally FM ordered (except for special filled-shell
cases). Also, the low energy excitations of this model are distinct from spin
wave excitations in usual Heisenberg ferromagnets, which will result in unusual
dynamic magnetic properties.Comment: 5 pages, RevTeX, 5 Postscript figures include
Interchain Coupling Effects and Solitons in CuGeO_3
The effects of interchain coupling on solitons and soliton lattice structures
in CuGeO3 are explored. It is shown that interchain coupling substantially
increases the soliton width and changes the soliton lattice structures in the
incommensurate phase. It is proposed that the experimentally observed large
soliton width in CuGeO3 is mainly due to interchain coupling effects.Comment: 4 pages, LaTex, one eps figure included. No essential changes except
forma
Viscous, resistive MHD stability computed by spectral techniques
Expansions in Chebyshev polynomials are used to study the linear stability of one dimensional magnetohydrodynamic (MHD) quasi-equilibria, in the presence of finite resistivity and viscosity. The method is modeled on the one used by Orszag in accurate computation of solutions of the Orr-Sommerfeld equation. Two Reynolds like numbers involving Alfven speeds, length scales, kinematic viscosity, and magnetic diffusivity govern the stability boundaries, which are determined by the geometric mean of the two Reynolds like numbers. Marginal stability curves, growth rates versus Reynolds like numbers, and growth rates versus parallel wave numbers are exhibited. A numerical result which appears general is that instability was found to be associated with inflection points in the current profile, though no general analytical proof has emerged. It is possible that nonlinear subcritical three dimensional instabilities may exist, similar to those in Poiseuille and Couette flow
High power photon collimators for the ILC.
An undulator-based source has been chosen as a part of the baseline configuration for the International Linear Collider (ILC) to generate an intense beam of polarised positrons. A photon collimator placed between the undulator and the target can be used to adjust the size, intensity and polarisation of the photon beam impacting the target, and can also protect the target station and limit the activation of downstream components. In this paper, we calculate quantities such as the energy deposition, temperature change, activation and dose rate for different designs of the photon collimator, and consider the advantages and disadvantages for each case
A New Bound on Excess Frequency Noise in Second Harmonic Generation in PPKTP at the 10^-19 Level
We report a bound on the relative frequency fluctuations in nonlinear second
harmonic generation. A 1064nm Nd:YAG laser is used to read out the phase of a
Mach-Zehnder interferometer while PPKTP, a nonlinear crystal, is placed in each
arm to generate second harmonic light. By comparing the arm length difference
of the Mach Zehnder as read out by the fundamental 1064 nm light, and its
second harmonic at 532 nm, we can bound the excess frequency noise introduced
in the harmonic generation process. We report an amplitude spectral density of
frequency noise with total RMS frequency deviation of 3mHz and a minimum value
of 20 {\mu}Hz/rtHz over 250 seconds with a measurement bandwidth of 128 Hz,
corresponding to an Allan deviation of 10^-19 at 20 seconds.Comment: Submitted to Optics Express June 201
Realizing degree sequences with graphs having nowhere-zero 3-flows
The following open problem was proposed by Archdeacon: Characterize all graphical sequences π such that some realization of π admits a nowhere-zero 3-flow. The purpose of this paper is to resolve this problem and present a complete characterization: A graphical sequence π = (d I,d2,...,dn) with minimum degree at least two has a realization that admits a nowhere-zero 3-flow if and only if π ≠ (34,2), (k,3k), (k2,3k-1), where k is an odd integer. © 2008 Society for Industrial and Applied Mathematics.published_or_final_versio
Quantum Manifestation of Elastic Constants in Nanostructures
Generally, there are two distinct effects in modifying the properties of
low-dimensional nanostructures: surface effect (SS) due to increased
surface-volume ratio and quantum size effect (QSE) due to quantum confinement
in reduced dimension. The SS has been widely shown to affect the elastic
constants and mechanical properties of nanostructures. Here, using Pb nanofilm
and graphene nanoribbon as model systems, we demonstrate the QSE on the elastic
constants of nanostructures by first-principles calculations. We show that
generally QSE is dominant in affecting the elastic constants of metallic
nanostructures while SS is more pronounced in semiconductor and insulator
nanostructures. Our findings have broad implications in quantum aspects of
nanomechanics
Charge Localization in Disordered Colossal-Magnetoresistance Manganites
The metallic or insulating nature of the paramagnetic phase of the
colossal-magnetoresistance manganites is investigated via a double exchange
Hamiltonian with diagonal disorder. Mobility edge trajectory is determined with
the transfer matrix method. Density of states calculations indicate that random
hopping alone is not sufficient to induce Anderson localization at the Fermi
level with 20-30% doping. We argue that the metal-insulator transtion is likely
due to the formation of localized polarons from nonuniform extended states as
the effective band width is reduced by random hoppings and electron-electron
interactions.Comment: 4 pages, RevTex. 4 Figures include
- …
