1,286 research outputs found
Arrow of time in a recollapsing quantum universe
We show that the Wheeler-DeWitt equation with a consistent boundary condition
is only compatible with an arrow of time that formally reverses in a
recollapsing universe. Consistency of these opposite arrows is facilitated by
quantum effects in the region of the classical turning point. Since
gravitational time dilation diverges at horizons, collapsing matter must then
start re-expanding ``anticausally" (controlled by the reversed arrow) before
horizons or singularities can form. We also discuss the meaning of the
time-asymmetric expression used in the definition of ``consistent histories".
We finally emphasize that there is no mass inflation nor any information loss
paradox in this scenario.Comment: Many conceptual clarifications include
Quantum Theory and Time Asymmetry
The relation between quantum measurement and thermodynamically irreversible
processes is investigated. The reduction of the state vector is fundamentally
asymmetric in time and shows an observer-relatedness which may explain the
double interpretation of the state vector as a representation of physical
states as well as of information about them. The concept of relevance being
used in all statistical theories of irreversible thermodynamics is shown to be
based on the same observer-relatedness. Quantum theories of irreversible
processes implicitly use an objectivized process of state vector reduction. The
conditions for the reduction are discussed, and I speculate that the final
(subjective) observer system might even be carried by a spacetime point.Comment: Latex version of a paper published in 1979 (with minor revisions), 18
page
Decoherence: Concepts and Examples
We give a pedagogical introduction to the process of decoherence - the
irreversible emergence of classical properties through interaction with the
environment. After discussing the general concepts, we present the following
examples: Localisation of objects, quantum Zeno effect, classicality of fields
and charges in QED, and decoherence in gravity theory. We finally emphasise the
important interpretational features of decoherence.Comment: 24 pages, LATEX, 9 figures, needs macro lamuphys.sty, to appear in
the Proceedings of the 10th Born Symposiu
Entanglement and the Thermodynamic Arrow of Time
We discuss quantum entanglement in the context of the thermodynamic arrow of
time. We review the role of correlations in entropy-decreasing events and prove
that the occurrence of a transformation between two thermodynamic states
constitutes a new type of entanglement witness, one not defined as a separating
plane in state space between separable and entangled states, but as a physical
process dependent on the local initial properties of the states. Extending work
by Partovi, we consider a general entangled multipartite system that allows
large reversals of the thermodynamic arrow of time. We describe a hierarchy of
arrows that arises from the different correlations allowed in a quantum state
and examine these features in the context of Maxwell's Demon. We examine in
detail the case of three qubits, and also propose some simple experimental
demonstrations possible with small numbers of qubits.Comment: 10 pages with 9 figure
Quantum Cosmology of Kantowski-Sachs like Models
The Wheeler-DeWitt equation for a class of Kantowski-Sachs like models is
completely solved. The generalized models include the Kantowski-Sachs model
with cosmological constant and pressureless dust. Likewise contained is a
joined model which consists of a Kantowski-Sachs cylinder inserted between two
FRW half--spheres. The (second order) WKB approximation is exact for the wave
functions of the complete set and this facilitates the product structure of the
wave function for the joined model. In spite of the product structure the wave
function can not be interpreted as admitting no correlations between the
different regions. This problem is due to the joining procedure and may
therefore be present for all joined models. Finally, the {s}ymmetric {i}nitial
{c}ondition (SIC) for the wave function is analyzed and compared with the ``no
bouindary'' condition. The consequences of the different boundary conditions
for the arrow of time are briefly mentioned.Comment: 21 pages, uses LaTeX2e, epsf.sty and float.sty, three figures (50
kb); changes: one figure added, new interpretation of quantizing procedure
for the joined model and many minor change
Following a "Collapsing" Wavefunction
I study the quantum mechanics of a spin interacting with an ``apparatus''.
Although the evolution of the whole system is unitary, the spin evolution is
not. The system is chosen so that the spin exhibits loss of quantum coherence,
or ``wavefunction collapse'', of the sort usually associated with a quantum
measurement. The system is analyzed from the point of view of the spin density
matrix (or ``Schmidt paths''), and also using the consistent histories
approach. These two points of view are contrasted with each other. Connections
between the results and the form of the Hamiltonian are discussed in detail.Comment: 30 pages, plain LaTex, 3 figures in a separate uuencoded fil
Coarse Grainings and Irreversibility in Quantum Field Theory
In this paper we are interested in the studying coarse-graining in field
theories using the language of quantum open systems. Motivated by the ideas of
Calzetta and Hu on correlation histories we employ the Zwanzig projection
technique to obtain evolution equations for relevant observables in
self-interacting scalar field theories. Our coarse-graining operation consists
in concentrating solely on the evolution of the correlation functions of degree
less than , a treatment which corresponds to the familiar from statistical
mechanics truncation of the BBKGY hierarchy at the n-th level. We derive the
equations governing the evolution of mean field and two-point functions thus
identifying the terms corresponding to dissipation and noise. We discuss
possible applications of our formalism, the emergence of classical behaviour
and the connection to the decoherent histories framework.Comment: 25 pages, Late
The -theorem in -statistics: influence on the molecular chaos hypothesis
We rediscuss recent derivations of kinetic equations based on the Kaniadakis'
entropy concept. Our primary objective here is to derive a kinetical version of
the second law of thermodynamycs in such a -framework. To this end, we
assume a slight modification of the molecular chaos hypothesis. For the
-theorem, it is shown that the collisional equilibrium states (null
entropy source term) are described by a -power law extension of the
exponential distribution and, as should be expected, all these results reduce
to the standard one in the limit .Comment: 4 pages, eqs. (18) and (22) have been corrected, to appear in Phys.
Lett.
On the Definition of Decoherence
We examine the relationship between the decoherence of quantum-mechanical
histories of a closed system (as discussed by Gell-Mann and Hartle) and
environmentally-induced diagonalization of the density operator for an open
system. We study a definition of decoherence which incorporates both of these
ideas, and show that it leads to a consistent probabilistic interpretation of
the reduced density operator.Comment: 10 pages, LaTeX, SJSU/TP-93-1
- …
