1,048 research outputs found

    Abelian Non-Global Logarithms from Soft Gluon Clustering

    Full text link
    Most recombination-style jet algorithms cluster soft gluons in a complex way. This leads to correlations in the soft gluon phase space and introduces logarithmic corrections to jet cross sections. The leading Abelian clustering logarithms occur at least at next-to leading logarithm (NLL) in the exponent of the distribution, and we show that new clustering effects contributing at NLL likely arise at each order. Therefore we find that it is unlikely that clustering logs can be resummed to NLL. Clustering logarithms make the anti-kT algorithm theoretically preferred, for which they are power suppressed. They can arise in Abelian and non-Abelian terms, and we calculate the Abelian clustering logarithms at two loops for the jet mass distribution using the Cambridge/Aachen and kT algorithms, including jet radius dependence, which extends previous results. We find that previously identified logarithms from clustering effects can be naturally thought of as a class of non-global logarithms (NGLs), which have traditionally been tied to non-Abelian correlations in soft gluon emission.Comment: 22 pages + appendices, 8 figure

    Jet p_T Resummation in Higgs Production at NNLL'+NNLO

    Full text link
    We present predictions for Higgs production via gluon fusion with a p_T veto on jets and with the resummation of jet-veto logarithms at NNLL'+$NNLO order. These results incorporate explicit O(alphas^2) calculations of soft and beam functions, which include the dominant dependence on the jet radius R. In particular the NNLL' order accounts for the correct boundary conditions for the N3LL resummation, for which the only unknown ingredients are higher-order anomalous dimensions. We use scale variations in a factorization theorem in both rapidity and virtuality space to estimate the perturbative uncertainties, accounting for both higher fixed-order corrections as well as higher-order towers of jet-p_T logarithms. This formalism also predicts the correlations in the theory uncertainty between the exclusive 0-jet and inclusive 1-jet bins. At the values of R used experimentally, there are important corrections due to jet algorithm clustering that include logarithms of R. Although we do not sum logarithms of R, we do include an explicit contribution in our uncertainty estimate to account for higher-order jet clustering logarithms. Precision predictions for this H+0-jet cross section and its theoretical uncertainty are an integral part of Higgs analyses that employ jet binning.Comment: 24 pages, 11 figure

    Factorization and Resummation for Dijet Invariant Mass Spectra

    Full text link
    Multijet cross sections at the LHC and Tevatron are sensitive to several distinct kinematic energy scales. When measuring the dijet invariant mass m_jj between two signal jets produced in association with other jets or weak bosons, m_jj will typically be much smaller than the total partonic center-of-mass energy Q, but larger than the individual jet masses m, such that there can be a hierarchy of scales m << m_jj << Q. This situation arises in many new-physics analyses at the LHC, where the invariant mass between jets is used to gain access to the masses of new-physics particles in a decay chain. At present, the logarithms arising from such a hierarchy of kinematic scales can only be summed at the leading-logarithmic level provided by parton-shower programs. We construct an effective field theory, SCET+, which is an extension of soft-collinear effective theory that applies to this situation of hierarchical jets. It allows for a rigorous separation of different scales in a multiscale soft function and for a systematic resummation of logarithms of both m_jj/Q and m/Q. As an explicit example, we consider the invariant mass spectrum of the two closest jets in e+e- -> 3 jets. We also give the generalization to pp -> N jets plus leptons relevant for the LHC.Comment: 37 pages, 6 figures; v2: journal versio

    An architecture for reliable distributed computer-controlled systems

    Get PDF
    In Distributed Computer-Controlled Systems (DCCS), both real-time and reliability requirements are of major concern. Architectures for DCCS must be designed considering the integration of processing nodes and the underlying communication infrastructure. Such integration must be provided by appropriate software support services. In this paper, an architecture for DCCS is presented, its structure is outlined, and the services provided by the support software are presented. These are considered in order to guarantee the real-time and reliability requirements placed by current and future systems

    De novo SCN1A mutations in Dravet syndrome and related epileptic encephalopathies are largely of paternal origin

    Get PDF
    Background: Dravet syndrome is a severe infantile epileptic encephalopathy caused in approximately 80% of cases by mutations in the voltage gated sodium channel subunit gene SCN1A. The majority of these mutations are de novo. The parental origin of de novo mutations varies widely among genetic disorders and the aim of this study was to determine this for Dravet syndrome. Methods: 91 patients with de novo SCN1A mutations and their parents were genotyped for single nucleotide polymorphisms (SNPs) in the region surrounding their mutation. Allele specific polymerase chain reaction (PCR) based on informative SNPs was used to separately amplify and sequence the paternal and maternal alleles to determine in which parental chromosome the mutation arose. Results: The parental origin of SCN1A mutations was established in 44 patients for whom both parents were available and SNPs were informative. The mutations were of paternal origin in 33 cases and of maternal origin in the remaining 11 cases. De novo mutation of SCN1A most commonly, but not exclusively, originates from the paternal chromosome. The average age of parents originating mutations did not differ from that of the general population. Conclusions: The greater frequency of paternally derived mutations in SCN1A is likely to be due to the greater chance of mutational events during the increased number of mitoses which occur during spermatogenesis compared to oogenesis, and the greater susceptibility to mutagenesis of the methylated DNA characteristic of sperm cells.Sarah E. Heron, Ingrid E. Scheffer, Xenia Iona, Sameer M. Zuberi, Rachael Birch, Jacinta M. McMahon, Carla M. Bruce, Samuel F. Berkovic, John C. Mulle

    Non-global Structure of the O({\alpha}_s^2) Dijet Soft Function

    Full text link
    High energy scattering processes involving jets generically involve matrix elements of light- like Wilson lines, known as soft functions. These describe the structure of soft contributions to observables and encode color and kinematic correlations between jets. We compute the dijet soft function to O({\alpha}_s^2) as a function of the two jet invariant masses, focusing on terms not determined by its renormalization group evolution that have a non-separable dependence on these masses. Our results include non-global single and double logarithms, and analytic results for the full set of non-logarithmic contributions as well. Using a recent result for the thrust constant, we present the complete O({\alpha}_s^2) soft function for dijet production in both position and momentum space.Comment: 55 pages, 8 figures. v2: extended discussion of double logs in the hard regime. v3: minor typos corrected, version published in JHEP. v4: typos in Eq. (3.33), (3.39), (3.43) corrected; this does not affect the main result, numerical results, or conclusion

    Characterization of ambient aerosols in Mexico City during the MCMA-2003 campaign with Aerosol Mass Spectrometry ? Part II: overview of the results at the CENICA supersite and comparison to previous studies

    No full text
    International audienceAn Aerodyne Aerosol Mass Spectrometer (AMS) was deployed at the CENICA Supersite during the Mexico City Metropolitan Area field study from 31 March?4 May 2003. The AMS provides real time information on mass concentration and composition of the non-refractory species in particulate matter less than 1 µm (NR-PM1) with high time and size-resolution. Measurements of Black Carbon (BC) using an aethalometer, and estimated soil concentrations from Proton-Induced X-Ray Emission (PIXE) analysis of impactor substrates are also presented and combined with the AMS in order to include refractory material and estimate the total PM2.5 mass concentration at CENICA during this campaign. In Mexico City, the organic fraction of the estimated PM2.5 at CENICA represents 54.6% of the mass, with the rest consisting of inorganic compounds (mainly ammonium nitrate and sulfate/ammonium salts), BC, and soil. Inorganic compounds represent 27.5% of PM2.5; BC mass concentration is about 11%; while soil represents about 6.9%. The NR species and BC have diurnal cycles that can be qualitatively interpreted as the interplay of direct emissions, photochemical production in the atmosphere followed by condensation and gas-to-particle partitioning, boundary layer dynamics, and/or advection. Bi- and trimodal size distributions are observed for the AMS species, with a small combustion (likely traffic) organic particle mode and an accumulation mode that contains mainly organic and secondary inorganic compounds. The AMS and BC mass concentrations, size distributions, and diurnal cycles are found to be qualitatively similar to those from most previous field measurements in Mexico City
    corecore