133,052 research outputs found
Probing molecular frame photoionization via laser generated high-order harmonics from aligned molecules
Present photoionization experiments cannot measure molecular frame
photoelectron angular distributions (MFPAD) from the outermost valence
electrons of molecules. We show that details of the MFPAD can be retrieved with
high-order harmonics generated by infrared lasers from aligned molecules. Using
accurately calculated photoionization transition dipole moments for
fixed-in-space molecules, we show that the dependence of the magnitude and
phase of the high-order harmonics on the alignment angle of the molecules
observed in recent experiments can be quantitatively reproduced. This result
provides the needed theoretical basis for ultrafast dynamic chemical imaging
using infrared laser pulses.Comment: 5 pages, 4 figure
A three-dimensional viscous flow analysis for the helicopter tip vortex generation problem
The tip vortex flow field occurring in the vicinity of the tip region of a a helicopter rotor blade is a very complicated three-dimensional, viscous flow phenomenon. The details of the flow in the tip region can have a major effect in determining the generated rotor noise and can significantly affect the performance and dynamic loading of the rotor blade. The three-dimensional viscous subsonic tip vortex generation processes is investigated by a numerical procedure which allows spatial forward-marching integration, utilizing flow approximations from the velocity-decomposition approach of Briley and McDonald. The approach has been applied to compute the laminar and turbulent tip vortex flows for a constant thickness slab airfoil with a square tip, a constant thickness slab airfoil with a half round tip and a NACA 0012 airfoil with a half round tip. The basic mechanism of the tip vortex generation process as well as the prediction of vortex appearance, strength and secondary flow shown by the calculations are in qualitative agreement with experimental results
Nonuniversal Effects in the Homogeneous Bose Gas
Effective field theory predicts that the leading nonuniversal effects in the
homogeneous Bose gas arise from the effective range for S-wave scattering and
from an effective three-body contact interaction. We calculate the leading
nonuniversal contributions to the energy density and condensate fraction and
compare the predictions with results from diffusion Monte Carlo calculations by
Giorgini, Boronat, and Casulleras. We give a crude determination of the
strength of the three-body contact interaction for various model potentials.
Accurate determinations could be obtained from diffusion Monte Carlo
calculations of the energy density with higher statistics.Comment: 24 pages, RevTex, 5 ps figures, included with epsf.te
Intrinsic Josephson Effects in the Magnetic Superconductor RuSr2GdCu2O8
We have measured interlayer current transport in small sized RuSr2GdCu2O8
single crystals. We find a clear intrinsic Josephson effect showing that the
material acts as a natural
superconductor-insulator-ferromagnet-insulator-superconductor superlattice. So
far, we detected no unconventional behavior due to the magnetism of the RuO2
layers.Comment: 4 pages, 5 figures, to appear in Phys. Rev. Let
Exploring the Spectrum of Heavy Quarkonium Hybrids with QCD Sum Rules
QCD Laplace sum rules are used to calculate heavy quarkonium (charmonium and
bottomonium) hybrid masses in several distinct channels. Previous
studies of heavy quarkonium hybrids did not include the effects of
dimension-six condensates, leading to unstable sum rules and unreliable mass
predictions in some channels. We have updated these sum rules to include
dimension-six condensates, providing new mass predictions for the spectra of
heavy quarkonium hybrids. We confirm the finding of other approaches that the
negative-parity states form the lightest hybrid
supermultiplet and the positive-parity
states are members of a heavier supermultiplet. Our results disfavor a pure
charmonium hybrid interpretation of the , in agreement with previous
work.Comment: Presented by RTK at the Theory Canada 9 Conference, held at Wilfrid
Laurier University in June 2014. Submitted for the conference proceedings to
be published in the Canadian Journal of Physics. 5 pages, 1 figure. Version
2: reference added, typo correcte
QCD Sum Rule Analysis of Heavy Quarkonium Hybrids
We have studied the charmonium and bottomonium hybrid states with various
quantum numbers in QCD sum rules. At leading order in , the
two-point correlation functions have been calculated up to dimension six
including the tri-gluon condensate and four-quark condensate. After performing
the QCD sum rule analysis, we have confirmed that the dimension six condensates
can stabilize the hybrid sum rules and allow the reliable mass predictions. We
have updated the mass spectra of the charmonium and bottomonium hybrid states
and identified that the negative-parity states with form the lightest hybrid supermultiplet while the positive-parity
states with belong to a heavier hybrid
supermultiplet.Comment: 7 pages, 1 figures. Some minor edits have been made. Presentation at
the DPF 2013 Meeting of the American Physical Society Division of Particles
and Fields, Santa Cruz, California, August 13-17, 201
A proposal for highly tunable optical parametric oscillation in silicon micro-resonators
We propose a novel scheme for continuous-wave pumped optical parametric oscillation (OPO) inside silicon micro-resonators. The proposed scheme not only requires a relative low lasing threshold, but also exhibits extremely broad tunability extending from the telecom band to mid infrared
Shape optimization of damping layers
Shape optimization of unconstrained and constrained damping layers is completed. The specific problem analyzed is a cantilever beam loaded at its tip by a harmonic force. Finite element modeling and mathematical programming techniques are used to obtain the solution. Performance measures are taken to be reduction of maximum diplacement and increase in fatigue lifetime. Results include the improvement, over the uniform treatment case, of these measures when the profile of the damping layer is optimized
- …
