1,165 research outputs found

    Effects of architectural issues on a km3 scale detector

    Full text link
    Simulation results showing the comparison between the performance of different km3 detector geometries are reported. Effective neutrino areas and angular resolutions are reported for three different geometries based on NEMO-towers and strings. The results show that the NEMO-tower based detector has the best performance concerning both the effective area and the angular resolution isotropyComment: to be published on VVVNT2 proceedings (Catania, Italy, November 8-11, 2005

    First results of the ANTARES neutrino telescope

    Get PDF
    The ANTARES neutrino telescope was completed in May 2008 and its first results of the searches for point-like and diffuse neutrino fluxes are presented. The sensitivity reached for point-like searches for a live time of 295 days and for declination lower than −50° is of 7.5×10−8 GeV−1 cm−2 s−1. For the search of diffuse flux the observed number of events is found to be compatible with the background expectation and a 90% CL upper limit of 5.3×10−8 GeV cm−2 s−1 sr−1 for a total live time of 334 days was set. The multi-messenger ANTARES program is also briefly described with particular emphasis on the neutrino alert system for the detection of transient source of neutrinos

    Strong enhancement of extremely energetic proton production in central heavy ion collisions at intermediate energy

    Full text link
    The energetic proton emission has been investigated as a function of the reaction centrality for the system 58Ni + 58Ni at 30A MeV. Extremely energetic protons (EpNN > 130 MeV) were measured and their multiplicity is found to increase almost quadratically with the number of participant nucleons thus indicating the onset of a mechanism beyond one and two-body dynamics.Comment: 5 pages, 2 figures, submitted to Physical Review Letter

    High-Energy Neutrino Astronomy

    Full text link
    Kilometer-scale neutrino detectors such as IceCube are discovery instruments covering nuclear and particle physics, cosmology and astronomy. Examples of their multidisciplinary missions include the search for the particle nature of dark matter and for additional small dimensions of space. In the end, their conceptual design is very much anchored to the observational fact that Nature accelerates protons and photons to energies in excess of 102010^{20} and 101310^{13} eV, respectively. The cosmic ray connection sets the scale of cosmic neutrino fluxes. In this context, we discuss the first results of the completed AMANDA detector and the reach of its extension, IceCube. Similar experiments are under construction in the Mediterranean. Neutrino astronomy is also expanding in new directions with efforts to detect air showers, acoustic and radio signals initiated by super-EeV neutrinos.Comment: 9 pages, Latex2e, uses ws-procs975x65standard.sty (included), 4 postscript figures. To appear in Proceedings of Thinking, Observing, and Mining the Universe, Sorrento, Italy, September 200

    Contemporary presence of dynamical and statistical production of intermediate mass fragments in midperipheral 58^{58}Ni+58^{58}Ni collisions at 30 MeV/nucleon

    Full text link
    The 58Ni+58Ni^{58}Ni+^{58}Ni reaction at 30 MeV/nucleon has been experimentally investigated at the Superconducting Cyclotron of the INFN Laboratori Nazionali del Sud. In midperipheral collisions the production of massive fragments (4\leZ\le12), consistent with the statistical fragmentation of the projectile-like residue and the dynamical formation of a neck, joining projectile-like and target-like residues, has been observed. The fragments coming from these different processes differ both in charge distribution and isotopic composition. In particular it is shown that these mechanisms leading to fragment production act contemporarily inside the same event.Comment: 9 pages, minor correction

    Size and asymmetry of the reaction entrance channel: influence on the probability of neck production

    Full text link
    The results of experiments performed to investigate the Ni+Al, Ni+Ni, Ni+Ag reactions at 30 MeV/nucleon are presented. From the study of dissipative midperipheral collisions, it has been possible to detect events in which Intermediate Mass Fragments (IMF) production takes place. The decay of a quasi-projectile has been identified; its excitation energy leads to a multifragmentation totally described in terms of a statistical disassembly of a thermalized system (T\simeq4 MeV, E^*\simeq4 MeV/nucleon). Moreover, for the systems Ni+Ni, Ni+Ag, in the same nuclear reaction, a source with velocity intermediate between that of the quasi-projectile and that of the quasi-target, emitting IMF, is observed. The fragments produced by this source are more neutron rich than the average matter of the overall system, and have a charge distribution different, with respect to those statistically emitted from the quasi-projectile. The above features can be considered as a signature of the dynamical origin of the midvelocity emission. The results of this analysis show that IMF can be produced via different mechanisms simultaneously present within the same collision. Moreover, once fixed the characteristics of the quasi-projectile in the three considered reactions (in size, excitation energy and temperature), one observes that the probability of a partner IMF production via dynamical mechanism has a threshold (not present in the Ni+Al case) and increases with the size of the target nucleus.Comment: 16 pages, 7 figures, accepted for publication on Nuclear Physics

    NEMO: A Project for a km3^3 Underwater Detector for Astrophysical Neutrinos in the Mediterranean Sea

    Full text link
    The status of the project is described: the activity on long term characterization of water optical and oceanographic parameters at the Capo Passero site candidate for the Mediterranean km3^3 neutrino telescope; the feasibility study; the physics performances and underwater technology for the km3^3; the activity on NEMO Phase 1, a technological demonstrator that has been deployed at 2000 m depth 25 km offshore Catania; the realization of an underwater infrastructure at 3500 m depth at the candidate site (NEMO Phase 2).Comment: Proceeding of ISCRA 2006, Erice 20-27 June 200

    Measurement of the atmospheric muon flux with the NEMO Phase-1 detector

    Get PDF
    The NEMO Collaboration installed and operated an underwater detector including prototypes of the critical elements of a possible underwater km3 neutrino telescope: a four-floor tower (called Mini-Tower) and a Junction Box. The detector was developed to test some of the main systems of the km3 detector, including the data transmission, the power distribution, the timing calibration and the acoustic positioning systems as well as to verify the capabilities of a single tridimensional detection structure to reconstruct muon tracks. We present results of the analysis of the data collected with the NEMO Mini-Tower. The position of photomultiplier tubes (PMTs) is determined through the acoustic position system. Signals detected with PMTs are used to reconstruct the tracks of atmospheric muons. The angular distribution of atmospheric muons was measured and results compared with Monte Carlo simulations.Comment: Astrop. Phys., accepte

    The ANTARES Collaboration: Contributions to ICRC 2017 Part I: Neutrino astronomy (diffuse fluxes and point sources)

    Get PDF
    Papers on neutrino astronomy (diffuse fluxes and point sources, prepared for the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the ANTARES Collaboratio
    corecore