6,712 research outputs found
Pseudorapidity Distribution of Charged Particles in PbarP Collisions at root(s)= 630GeV
Using a silicon vertex detector, we measure the charged particle
pseudorapidity distribution over the range 1.5 to 5.5 using data collected from
PbarP collisions at root s = 630 GeV. With a data sample of 3 million events,
we deduce a result with an overall normalization uncertainty of 5%, and typical
bin to bin errors of a few percent. We compare our result to the measurement of
UA5, and the distribution generated by the Lund Monte Carlo with default
settings. This is only the second measurement at this level of precision, and
only the second measurement for pseudorapidity greater than 3.Comment: 9 pages, 5 figures, LaTeX format. For ps file see
http://hep1.physics.wayne.edu/harr/harr.html Submitted to Physics Letters
Averages of b-hadron Properties at the End of 2005
This article reports world averages for measurements on b-hadron properties
obtained by the Heavy Flavor Averaging Group (HFAG) using the available results
as of at the end of 2005. In the averaging, the input parameters used in the
various analyses are adjusted (rescaled) to common values, and all known
correlations are taken into account. The averages include lifetimes, neutral
meson mixing parameters, parameters of semileptonic decays, branching fractions
of B meson decays to final states with open charm, charmonium and no charm, and
measurements related to CP asymmetries
Estimating the inelasticity with the information theory approach
Using the information theory approach, in both its extensive and nonextensive
versions, we estimate the inelasticity parameter of hadronic reactions
together with its distribution and energy dependence from and
data. We find that the inelasticity remains essentially constant in energy
except for a variation around , as was originally expected.Comment: 14 pages, 8 figures. Misprints correcte
Physico-chemical foundations underpinning microarray and next-generation sequencing experiments
Hybridization of nucleic acids on solid surfaces is a key process involved in high-throughput technologies such as microarrays and, in some cases, next-generation sequencing (NGS). A physical understanding of the hybridization process helps to determine the accuracy of these technologies. The goal of a widespread research program is to develop reliable transformations between the raw signals reported by the technologies and individual molecular concentrations from an ensemble of nucleic acids. This research has inputs from many areas, from bioinformatics and biostatistics, to theoretical and experimental biochemistry and biophysics, to computer simulations. A group of leading researchers met in Ploen Germany in 2011 to discuss present knowledge and limitations of our physico-chemical understanding of high-throughput nucleic acid technologies. This meeting inspired us to write this summary, which provides an overview of the state-of-the-art approaches based on physico-chemical foundation to modeling of the nucleic acids hybridization process on solid surfaces. In addition, practical application of current knowledge is emphasized
Isospin influences on particle emission and critical phenomenon in nuclear dissociation
Features of particle emission and critical point behavior are investigated as
functions of the isospin of disassembling sources and temperature at a moderate
freeze-out density for medium-size Xe isotopes in the framework of isospin
dependent lattice gas model. Multiplicities of emitted light particles,
isotopic and isobaric ratios of light particles show the strong dependence on
the isospin of the dissociation source, but double ratios of light isotope
pairs and the critical temperature determined by the extreme values of some
critical observables are insensitive to the isospin of the systems. Values of
the power law parameter of cluster mass distribution, mean multiplicity of
intermediate mass fragments (), information entropy () and Campi's
second moment () also show a minor dependence on the isospin of Xe
isotopes at the critical point. In addition, the slopes of the average
multiplicites of the neutrons (), protons (), charged particles
(), and IMFs (), slopes of the largest fragment mass number
(), and the excitation energy per nucleon of the disassembling source
() to temperature are investigated as well as variances of the
distributions of , , , , and . It
is found that they can be taken as additional judgements to the critical
phenomena.Comment: 9 Pages, 8 figure
- …
