9,139 research outputs found
The hunt for the Milky Way's accreted disc
The Milky Way is expected to host an accreted disc of stars and dark matter.
This forms as massive >1:10 mergers are preferentially dragged towards the disc
plane by dynamical friction and then tidally shredded. The accreted disc likely
contributes only a tiny fraction of the Milky Way's thin and thick stellar
disc. However, it is interesting because: (i) its associated `dark disc' has
important implications for experiments hoping to detect a dark matter particle
in the laboratory; and (ii) the presence or absence of such a disc constrains
the merger history of our Galaxy. In this work, we develop a chemo-dynamical
template to hunt for the accreted disc. We apply our template to the
high-resolution spectroscopic sample from Ruchti et al. (2011), finding at
present no evidence for accreted stars. Our results are consistent with a
quiescent Milky Way with no >1:10 mergers since the disc formed and a
correspondingly light `dark disc'. However, we caution that while our method
can robustly identify accreted stars, our incomplete stellar sample makes it
more challenging to definitively rule them out. Larger unbiased stellar samples
will be required for this.Comment: 14 pages; 8 figures; 1 table. Accepted for publication in MNRA
Athlete learning in Olympic sport
High-performance sport impacts athletes beyond the physical. Coaches and coaching practice are particularly influential in shaping this learning and development. This article examines the learning identified through an inductive content analysis of eight former Olympic athletes’ career narratives. Three phases of learning could be identified across the cohort: ‘Growing into high-performance sport’, ‘Making sense of high-performance sport’, and ‘(Re)shaping high-performance sport’. A cultural perspective of learning, in particular the metaphor of ‘becoming’, is employed to interpret the Olympians’ learning experiences. The findings of this research indicate that athlete learning is bound by particular high-performance sporting contexts and career phases, yet impacted by the athletes’ individual backgrounds and dispositions. Further, data indicate that athletes’ personal development reflexively intertwines with athletic performance and performance enhancement. Implications for coaches are to: (1) involve athletes in co-constructing their sporting cultures and training contexts; and (2) provide possibilities and support for athletes to develop personally
Old puzzle, new insights: a lithium rich giant quietly burning helium in its core
About 1% of giant stars have been shown to have large surface Li abundances,
which is unexpected according to standard stellar evolution models. Several
scenarios for lithium production have been proposed, but it is still unclear
why these Li-rich giants exist. A missing piece in this puzzle is the knowledge
of the exact stage of evolution of these stars. Using low-and-high-resolution
spectroscopic observations, we have undertaken a survey of lithium-rich giants
in the Kepler field. In this letter, we report the finding of the first
confirmed Li-rich core-helium-burning giant, as revealed by asteroseismic
analysis. The evolutionary timescales constrained by its mass suggest that
Li-production most likely took place through non-canonical mixing at the
RGB-tip, possibly during the helium flash.Comment: 16 pages, 4 figures, 1 table, accepted in ApJ Letter
The RAVE Survey: Constraining the Local Galactic Escape Speed
We report new constraints on the local escape speed of our Galaxy. Our
analysis is based on a sample of high velocity stars from the RAVE survey and
two previously published datasets. We use cosmological simulations of disk
galaxy formation to motivate our assumptions on the shape of the velocity
distribution, allowing for a significantly more precise measurement of the
escape velocity compared to previous studies. We find that the escape velocity
lies within the range 498\kms < \ve < 608 \kms (90 per cent confidence), with
a median likelihood of 544\kms. The fact that \ve^2 is significantly
greater than 2\vc^2 (where \vc=220\kms is the local circular velocity)
implies that there must be a significant amount of mass exterior to the Solar
circle, i.e. this convincingly demonstrates the presence of a dark halo in the
Galaxy. For a simple isothermal halo, one can calculate that the minimum radial
extent is kpc. We use our constraints on \ve to determine the mass
of the Milky Way halo for three halo profiles. For example, an adiabatically
contracted NFW halo model results in a virial mass of
and virial radius of
kpc (90 per cent confidence). For this model the circular
velocity at the virial radius is 142^{+31}_{-21}\kms. Although our halo
masses are model dependent, we find that they are in good agreement with each
other.Comment: 19 pages, 9 figures, MNRAS (accepted). v2 incorporates minor cosmetic
revisions which have no effect on the results or conclusion
The Gaia-ESO Survey: the selection function of the Milky Way field stars
The Gaia-ESO Survey was designed to target all major Galactic components
(i.e., bulge, thin and thick discs, halo and clusters), with the goal of
constraining the chemical and dynamical evolution of the Milky Way. This paper
presents the methodology and considerations that drive the selection of the
targeted, allocated and successfully observed Milky Way field stars. The
detailed understanding of the survey construction, specifically the influence
of target selection criteria on observed Milky Way field stars is required in
order to analyse and interpret the survey data correctly. We present the target
selection process for the Milky Way field stars observed with VLT/FLAMES and
provide the weights that characterise the survey target selection. The weights
can be used to account for the selection effects in the Gaia-ESO Survey data
for scientific studies. We provide a couple of simple examples to highlight the
necessity of including such information in studies of the stellar populations
in the Milky Way.Comment: 18 pages, 19 figures, Accepted for publication in MNRAS (April 25,
2016
A spectroscopic survey of thick disc stars outside the solar neighbourhood
We performed a spectroscopic survey of nearly 700 stars probing the galactic
thick disc far from the solar neighbourhood towards the galactic coordinates
(l~277, b~47). The derived effective temperatures, surface gravities and
overall metallicities were then combined with stellar evolution isochrones,
radial velocities and proper motions to derive the distances, kinematics and
orbital parameters of the sample stars. The targets belonging to each galactic
component (thin disc, thick disc, halo) were selected either on their
kinematics or according to their position above the galactic plane, and the
vertical gradients were also estimated. We present here atmospheric parameters,
distances and kinematics for this sample, and a comparison of our kinematic and
metallicity distributions with the Besancon model of the Milky Way. The thick
disc far from the solar neighbourhood is found to differ only slightly from the
thick disc properties as derived in the solar vicinity. For regions where the
thick disc dominates, we measured vertical velocity and metallicity trends of
d(V_phi)/dZ = 19 +/- 8 km/s/kpc and d[M/H]/dZ = -0.14 +/- 0.05 dex/kpc,
respectively. These trends can be explained as a smooth transition between the
different galactic components, although intrinsic gradients could not be
excluded. In addition, a correlation d(V_phi)/d[M/H] = -45 +/- 12 km/s/dex
between the orbital velocity and the metallicity of the thick disc is detected.
This gradient is inconsistent with the SDSS photometric survey analysis, which
did not detect any such trend, and challenges radial migration models of thick
disc formation. Estimations of the scale heights and scale lengths for
different metallicity bins of the thick disc result in consistent values, with
hR~3.4 \pm 0.7 kpc, and hZ~694 \pm 45 pc, showing no evidence of relics of
destroyed massive satellites.Comment: 19 pages, 15 figures, accepted for publication in A&
A High-resolution Scintillating Fiber Tracker With Silicon Photomultiplier Array Readout
We present prototype modules for a tracking detector consisting of multiple
layers of 0.25 mm diameter scintillating fibers that are read out by linear
arrays of silicon photomultipliers. The module production process is described
and measurements of the key properties for both the fibers and the readout
devices are shown. Five modules have been subjected to a 12 GeV/c proton/pion
testbeam at CERN. A spatial resolution of 0.05 mm and light yields exceeding 20
detected photons per minimum ionizing particle have been achieved, at a
tracking efficiency of more than 98.5%. Possible techniques for further
improvement of the spatial resolution are discussed.Comment: 31 pages, 27 figures, pre-print version of an article published in
Nuclear Instruments and Methods in Physics Research Section A, Vol. 62
The Gaia-ESO Survey: a quiescent Milky Way with no significant dark/stellar accreted disc
According to our current cosmological model, galaxies like the Milky Way are
expected to experience many mergers over their lifetimes. The most massive of
the merging galaxies will be dragged towards the disc-plane, depositing stars
and dark matter into an accreted disc structure. In this work, we utilize the
chemo-dynamical template developed in Ruchti et al. to hunt for accreted stars.
We apply the template to a sample of 4,675 stars in the third internal data
release from the Gaia-ESO Spectroscopic Survey. We find a significant component
of accreted halo stars, but find no evidence of an accreted disc component.
This suggests that the Milky Way has had a rather quiescent merger history
since its disc formed some 8-10 billion years ago and therefore possesses no
significant dark matter disc.Comment: 15 pages, 11 figures, accepted for publication in MNRA
The Dark Matter Density in the Solar Neighborhood reconsidered
Both the gas flaring and the dip in the rotation curve, which was recently
reconfirmed with precise measurements using the VERA VLBI array in Japan,
suggest doughnut-like substructure in the dark matter (DM) halo. A global fit
to all available data shows that the data are indeed best described by an NFW
DM profile complemented by two doughnut-like DM substructures with radii of 4.2
and 12.4 kpc, which coincide with the local dust ring and the Monocerus ring of
stars, respectively. Both regions have been suggested as regions with tidal
streams from "shredded" satellites. If real, the radial extensions of these
nearby ringlike structures enhance the local dark matter density by a factor of
four to about 1.3 GeV/cm.
It is shown that i) this higher DM density is perfectly consistent with the
local gravitational potential determining the surface density and the local
matter density (Oort limit), ii) previous determinations of the surface density
were biased by the assumption of a smoothly varying DM halo and iii) the
s-shaped gas flaring is explained. Such a possible enhancement of the local DM
density is of great interest for direct DM searches and would change the
directional dependence for indirect DM searches.Comment: 14 pages, 4 figures, extended version, accepted for publication in
JCA
Constraints on the Formation of the Galactic Bulge from Na, Al, and Heavy Element Abundances in Plaut's Field
We report chemical abundances of Na, Al, Zr, La, Nd, and Eu for 39 red giant
branch (RGB) stars and 23 potential inner disk red clump stars located in
Plaut-s low extinction window. We also measure lithium for a super Li-rich RGB
star. The abundances were determined by spectrum synthesis of high resolution
(R~25,000), high signal-to-noise (S/N~50-100 pixel-1) spectra obtained with the
Blanco 4m telescope and Hydra multifiber spectrograph. For the bulge RGB stars,
we find a general increase in the [Na/Fe] and [Na/Al] ratios with increasing
metallicity, and a similar decrease in [La/Fe] and [Nd/Fe]. Additionally, the
[Al/Fe] and [Eu/Fe] abundance trends almost identically follow those of the
{\alpha}-elements, and the [Zr/Fe] ratios exhibit relatively little change with
[Fe/H]. The consistently low [La/Eu] ratios of the RGB stars indicate that at
least a majority of bulge stars formed rapidly (<1 Gyr) and before the main
s-process could become a significant pollution source. In contrast, we find
that the potential inner disk clump stars exhibit abundance patterns more
similar to those of the thin and thick disks. Comparisons between the abundance
trends at different bulge locations suggest that the inner and outer bulge
formed on similar timescales. However, we find evidence of some abundance
differences between the most metal-poor and metal-rich stars in various bulge
fields. The data also indicate that the halo may have had a more significant
impact on the outer bulge initial composition than the inner bulge composition.
The [Na/Fe] and to a lesser extent [La/Fe] abundances further indicate that the
metal-poor bulge, at least at ~1 kpc from the Galactic center, and thick disk
may not share an identical chemistry.Comment: Accepted for publication in ApJ; 66 pages, 17 figures, 3 tables;
prior to publication, data tables in electronic form will be made available
upon reques
- …
