1,162 research outputs found

    Effective field theory calculation of conservative binary dynamics at third post-Newtonian order

    Full text link
    We reproduce the two-body gravitational conservative dynamics at third post-Newtonian order for spin-less sources by using the effective field theory methods for the gravitationally bound two-body system, proposed by Goldberger and Rothstein. This result has been obtained by automatizing the computation of Feynman amplitudes within a Mathematica algorithm, paving the way for higher-order computations not yet performed by traditional methods.Comment: 24 pages, 6 figures. Typos corrected and references added in v2. Typos corrected in v

    Aligned Spins: Orbital Elements, Decaying Orbits, and Last Stable Circular Orbit to high post-Newtonian Orders

    Full text link
    In this article the quasi-Keplerian parameterisation for the case that spins and orbital angular momentum in a compact binary system are aligned or anti-aligned with the orbital angular momentum vector is extended to 3PN point-mass, next-to-next-to-leading order spin-orbit, next-to-next-to-leading order spin(1)-spin(2), and next-to-leading order spin-squared dynamics in the conservative regime. In a further step, we use the expressions for the radiative multipole moments with spin to leading order linear and quadratic in both spins to compute radiation losses of the orbital binding energy and angular momentum. Orbital averaged expressions for the decay of energy and eccentricity are provided. An expression for the last stable circular orbit is given in terms of the angular velocity type variable xx.Comment: 30 pages, 2 figures, v2: update to match published versio

    Higgs-graviscalar mixing in type I string theory

    Get PDF
    We investigate the possibility of mixing between open and closed string excitations in D-brane models with the fundamental string scale at the TeV. The open string modes describe the Standard Model Higgs, while closed strings describe graviscalars living in the bulk. This provides a string setup for computing the Higgs-graviscalar mixing, that leads to a phenomenologically interesting invisible width of the Higgs in low scale quantum gravity models, as suggested previously by Giudice, Rattazzi and Wells.Comment: 20 pages, typos correcte

    Complete phenomenological gravitational waveforms from spinning coalescing binaries

    Full text link
    The quest for gravitational waves from coalescing binaries is customarily performed by the LIGO-Virgo collaboration via matched filtering, which requires a detailed knowledge of the signal. Complete analytical coalescence waveforms are currently available only for the non-precessing binary systems. In this paper we introduce complete phenomenological waveforms for the dominant quadrupolar mode of generically spinning systems. These waveforms are constructed by bridging the gap between the analytically known inspiral phase, described by spin Taylor (T4) approximants in the restricted waveform approximation, and the ring-down phase through a phenomenological intermediate phase, calibrated by comparison with specific, numerically generated waveforms, describing equal mass systems with dimension-less spin magnitudes equal to 0.6. The overlap integral between numerical and phenomenological waveforms ranges between 0.95 and 0.99.Comment: Proceeding for the GWDAW-14 conference. Added reference in v

    All-sky search of NAUTILUS data

    Full text link
    A search for periodic gravitational-wave signals from isolated neutron stars in the NAUTILUS detector data is presented. We have analyzed half a year of data over the frequency band Hz,thespindownrange Hz, the spindown range Hz/s and over the entire sky. We have divided the data into 2 day stretches and we have analyzed each stretch coherently using matched filtering. We have imposed a low threshold for the optimal detection statistic to obtain a set of candidates that are further examined for coincidences among various data stretches. For some candidates we have also investigated the change of the signal-to-noise ratio when we increase the observation time from two to four days. Our analysis has not revealed any gravitational-wave signals. Therefore we have imposed upper limits on the dimensionless gravitational-wave amplitude over the parameter space that we have searched. Depending on frequency, our upper limit ranges from 3.4×10233.4 \times 10^{-23} to 1.3×10221.3 \times 10^{-22}. We have attempted a statistical verification of the hypotheses leading to our conclusions. We estimate that our upper limit is accurate to within 18%.Comment: LaTeX, 12 page

    Effective field theory analysis of the self-interacting chameleon

    Full text link
    We analyse the phenomenology of a self-interacting scalar field in the context of the chameleon scenario originally proposed by Khoury and Weltman. In the absence of self-interactions, this type of scalar field can mediate long range interactions and simultaneously evade constraints from violation of the weak equivalence principle. By applying to such a scalar field the effective field theory method proposed for Einstein gravity by Goldberger and Rothstein, we give a thorough perturbative evaluation of the importance of non-derivative self-interactions in determining the strength of the chameleon mediated force in the case of orbital motion. The self-interactions are potentially dangerous as they can change the long range behaviour of the field. Nevertheless, we show that they do not lead to any dramatic phenomenological consequence with respect to the linear case and solar system constraints are fulfilled.Comment: 15 pages, 2 figures. Final version accepted for publication on General Relativity and Gravitatio
    corecore