1,162 research outputs found
Effective field theory calculation of conservative binary dynamics at third post-Newtonian order
We reproduce the two-body gravitational conservative dynamics at third
post-Newtonian order for spin-less sources by using the effective field theory
methods for the gravitationally bound two-body system, proposed by Goldberger
and Rothstein. This result has been obtained by automatizing the computation of
Feynman amplitudes within a Mathematica algorithm, paving the way for
higher-order computations not yet performed by traditional methods.Comment: 24 pages, 6 figures. Typos corrected and references added in v2.
Typos corrected in v
Aligned Spins: Orbital Elements, Decaying Orbits, and Last Stable Circular Orbit to high post-Newtonian Orders
In this article the quasi-Keplerian parameterisation for the case that spins
and orbital angular momentum in a compact binary system are aligned or
anti-aligned with the orbital angular momentum vector is extended to 3PN
point-mass, next-to-next-to-leading order spin-orbit, next-to-next-to-leading
order spin(1)-spin(2), and next-to-leading order spin-squared dynamics in the
conservative regime. In a further step, we use the expressions for the
radiative multipole moments with spin to leading order linear and quadratic in
both spins to compute radiation losses of the orbital binding energy and
angular momentum. Orbital averaged expressions for the decay of energy and
eccentricity are provided. An expression for the last stable circular orbit is
given in terms of the angular velocity type variable .Comment: 30 pages, 2 figures, v2: update to match published versio
Higgs-graviscalar mixing in type I string theory
We investigate the possibility of mixing between open and closed string
excitations in D-brane models with the fundamental string scale at the TeV. The
open string modes describe the Standard Model Higgs, while closed strings
describe graviscalars living in the bulk. This provides a string setup for
computing the Higgs-graviscalar mixing, that leads to a phenomenologically
interesting invisible width of the Higgs in low scale quantum gravity models,
as suggested previously by Giudice, Rattazzi and Wells.Comment: 20 pages, typos correcte
Complete phenomenological gravitational waveforms from spinning coalescing binaries
The quest for gravitational waves from coalescing binaries is customarily
performed by the LIGO-Virgo collaboration via matched filtering, which requires
a detailed knowledge of the signal. Complete analytical coalescence waveforms
are currently available only for the non-precessing binary systems. In this
paper we introduce complete phenomenological waveforms for the dominant
quadrupolar mode of generically spinning systems. These waveforms are
constructed by bridging the gap between the analytically known inspiral phase,
described by spin Taylor (T4) approximants in the restricted waveform
approximation, and the ring-down phase through a phenomenological intermediate
phase, calibrated by comparison with specific, numerically generated waveforms,
describing equal mass systems with dimension-less spin magnitudes equal to 0.6.
The overlap integral between numerical and phenomenological waveforms ranges
between 0.95 and 0.99.Comment: Proceeding for the GWDAW-14 conference. Added reference in v
All-sky search of NAUTILUS data
A search for periodic gravitational-wave signals from isolated neutron stars
in the NAUTILUS detector data is presented. We have analyzed half a year of
data over the frequency band Hz/s and over the entire sky. We have divided the
data into 2 day stretches and we have analyzed each stretch coherently using
matched filtering. We have imposed a low threshold for the optimal detection
statistic to obtain a set of candidates that are further examined for
coincidences among various data stretches. For some candidates we have also
investigated the change of the signal-to-noise ratio when we increase the
observation time from two to four days. Our analysis has not revealed any
gravitational-wave signals. Therefore we have imposed upper limits on the
dimensionless gravitational-wave amplitude over the parameter space that we
have searched. Depending on frequency, our upper limit ranges from to . We have attempted a statistical
verification of the hypotheses leading to our conclusions. We estimate that our
upper limit is accurate to within 18%.Comment: LaTeX, 12 page
Effective field theory analysis of the self-interacting chameleon
We analyse the phenomenology of a self-interacting scalar field in the
context of the chameleon scenario originally proposed by Khoury and Weltman. In
the absence of self-interactions, this type of scalar field can mediate long
range interactions and simultaneously evade constraints from violation of the
weak equivalence principle. By applying to such a scalar field the effective
field theory method proposed for Einstein gravity by Goldberger and Rothstein,
we give a thorough perturbative evaluation of the importance of non-derivative
self-interactions in determining the strength of the chameleon mediated force
in the case of orbital motion. The self-interactions are potentially dangerous
as they can change the long range behaviour of the field. Nevertheless, we show
that they do not lead to any dramatic phenomenological consequence with respect
to the linear case and solar system constraints are fulfilled.Comment: 15 pages, 2 figures. Final version accepted for publication on
General Relativity and Gravitatio
- …
