829 research outputs found

    Effective non-intercommutation of local cosmic strings at high collision speeds

    Get PDF
    We present evidence that Abrikosov-Nielsen-Olesen (ANO) strings pass through each other for very high speeds of approach due to a double intercommutation. In near-perpendicular collisions numerical simulations give threshold speeds bounded above by 0.97c\sim 0.97 c for type I, and by 0.90c\sim 0.90 c for deep type II strings. The second intercommutation occurs because at ultra high collision speeds, the connecting segments formed by the first intercommutation are nearly static and almost antiparallel, which gives them time to interact and annihilate. A simple model explains the rough features of the threshold velocity dependence with the incidence angle. For deep type II strings and large incidence angles a second effect becomes dominant, the formation of a loop that catches up with the interpolating segments. The loop is related to the observed vortex - antivortex reemergence in two-dimensions. In this case the critical value for double intercommutation can become much lower.Comment: 5 pages, 4 figures. data points added, plots for deep type II regime showing lower critical velocities, some minor changes in tex

    Cosmic string Y-junctions: a comparison between field theoretic and Nambu-Goto dynamics

    Get PDF
    We explore the formation of cosmic string Y-junctions when strings of two different types collide, which has recently become important since string theory can yield cosmic strings of distinct types. Using a model containing two types of local U(1) string and stable composites, we simulate the collision of two straight strings and investigate whether the dynamics matches that previously obtained using the Nambu-Goto action, which is not strictly valid close to the junction. We find that the Nambu-Goto action performs only moderately well at predicting when the collision results in the formation of a pair of Y-junctions (with a composite string connecting them). However, we find that when they do form, the late time dynamics matches those of the Nambu-Goto approximation very closely. We also see little radiative emission from the Y-junction system, which suggests that radiative decay due to bridge formation does not appear to be a means via which a cosmological network of such string would rapidly lose energy.Comment: 17 pages, 17 figures; typo correctio

    Intercommutation of Semilocal Strings and Skyrmions

    Get PDF
    We study the intercommuting of semilocal strings and Skyrmions, for a wide range of internal parameters, velocities and intersection angles by numerically evolving the equations of motion. We find that the collisions of strings and strings, strings and Skyrmions, and Skyrmions and Skyrmions, all lead to intercommuting for a wide range of parameters. Even the collisions of unstable Skyrmions and strings leads to intercommuting, demonstrating that the phenomenon of intercommuting is very robust, extending to dissimilar field configurations that are not stationary solutions. Even more remarkably, at least for the semilocal U(2) formulation considered here, all intercommutations trigger a reversion to U(1) Nielsen-Olesen strings.Comment: 4 pages, 4 figures. Fixed typos, added reference

    Bipolar molecular outflows driven by hydromagnetic protostellar winds

    Get PDF
    We demonstrate that magnetically-collimated protostellar winds will sweep ambient material into thin, radiative, momentum-conserving shells whose features reproduce those commonly observed in bipolar molecular outflows. We find the typical position-velocity and mass-velocity relations to occur in outflows in a wide variety of ambient density distributions, regardless of the time histories of their driving winds.Comment: 4 pages, 1 figure, submitted to ApJ

    Area Invariance of Apparent Horizons under Arbitrary Boosts

    Full text link
    It is a well known analytic result in general relativity that the 2-dimensional area of the apparent horizon of a black hole remains invariant regardless of the motion of the observer, and in fact is independent of the t=constant t=constant slice, which can be quite arbitrary in general relativity. Nonetheless the explicit computation of horizon area is often substantially more difficult in some frames (complicated by the coordinate form of the metric), than in other frames. Here we give an explicit demonstration for very restricted metric forms of (Schwarzschild and Kerr) vacuum black holes. In the Kerr-Schild coordinate expression for these spacetimes they have an explicit Lorentz-invariant form. We consider {\it boosted} versions with the black hole moving through the coordinate system. Since these are stationary black hole spacetimes, the apparent horizons are two dimensional cross sections of their event horizons, so we compute the areas of apparent horizons in the boosted space with (boosted) t=constant t = constant , and obtain the same result as in the unboosted case. Note that while the invariance of area is generic, we deal only with black holes in the Kerr-Schild form, and consider only one particularly simple change of slicing which amounts to a boost. Even with these restrictions we find that the results illuminate the physics of the horizon as a null surface and provide a useful pedagogical tool. As far as we can determine, this is the first explicit calculation of this type demonstrating the area invariance of horizons. Further, these calculations are directly relevant to transformations that arise in computational representation of moving black holes. We present an application of this result to initial data for boosted black holes.Comment: 19 pages, 3 figures. Added a new section and 2 plots along with a coautho

    Kinematic Constraints on Formation of Bound States of Cosmic Strings - Field Theoretical Approach

    Full text link
    Superstring theory predicts the potential formation of string networks with bound states ending in junctions. Kinematic constraints for junction formation have been derived within the Nambu-Goto thin string approximation. Here we test these constraints numerically in the framework of the Abelian-Higgs model in the Type-I regime and report on good agreement with the analytical predictions. We also demonstrate that strings can effectively pass through each other when they meet at speeds slightly above the critical velocity permitting bound state formation. This is due to reconnection effects that are beyond the scope of the Nambu-Goto approximation.Comment: 6 pages, 12 eps figures - matches the published versio

    Collisions of strings with Y junctions

    Full text link
    We study the dynamics of Nambu--Goto strings with junctions at which three strings meet. In particular, we exhibit one simple exact solution and examine the process of intercommuting of two straight strings, in which they exchange partners but become joined by a third string. We show that there are important kinematical constraints on this process. The exchange cannot occur if the strings meet with very large relative velocity. This may have important implications for the evolution of cosmic superstring networks and non-abelian string networks.Comment: 4 pages, 1 figure, uses revtex 4. Clarifying comments added to correct a conceptual error, reference updated. Version accepted by Phys Rev Letters, with additional references and minor change

    High speed collision and reconnection of Abelian Higgs strings in the deep type-II regime

    Get PDF
    We study high speed collision and reconnection of cosmic strings in the type-II regime (scalar-to-gauge mass ratios larger than one) of the Abelian Higgs model. New phenomena such as multiple reconnections and clustering of small scale structure have been observed and reported in a previous paper, as well as the fact that the previously observed loop that mediates the second intercommutation is only a loop for sufficiently large beta = m_scalar^2/m_gauge^2. Here we give a more detailed account of our study, involving 3D numerical simulations with beta in the range 1 to 64, the largest value simulated to date, as well as 2D simulations of vortex-antivortex (v-av) collisions to understand the possible relation to the new 3D phenomena. Our simulations give further support to the idea that Abelian Higgs strings never pass through each other, unless this is the result of a double reconnection; and that the critical velocity (v_c) for double reconnection goes down with increasing mass ratio, but energy conservation suggests a lower bound around 0.77c. We discuss the qualitative change in the intermediate state observed for large mass ratios. We relate it to a similar change in the outcome of 2D v-av collisions in the form of radiating bound states. In the deep type-II regime the angular dependence of v_c for double reconnection does not seem to conform to semi-analytic predictions based on the Nambu-Goto approximation. We model the high angle collisions reasonably well by incorporating the effect of core interactions, and the torque they produce on the approaching strings, into the Nambu-Goto description of the collision. An interesting, counterintuitive aspect is that the effective collision angle is smaller because of the torque. Our results suggest differences in network evolution and radiation output with respect to the predictions based on Nambu-Goto or beta = 1 Abelian Higgs dynamics.Comment: 13 pages, 7 figures Send For Publication in Physics Review
    corecore