73 research outputs found
Fractional smoothness and applications in finance
This overview article concerns the notion of fractional smoothness of random
variables of the form , where is a certain
diffusion process. We review the connection to the real interpolation theory,
give examples and applications of this concept. The applications in stochastic
finance mainly concern the analysis of discrete time hedging errors. We close
the review by indicating some further developments.Comment: Chapter of AMAMEF book. 20 pages
The Euler-Maruyama approximation for the absorption time of the CEV diffusion
A standard convergence analysis of the simulation schemes for the hitting
times of diffusions typically requires non-degeneracy of their coefficients on
the boundary, which excludes the possibility of absorption. In this paper we
consider the CEV diffusion from the mathematical finance and show how a weakly
consistent approximation for the absorption time can be constructed, using the
Euler-Maruyama scheme
Origin and insertion of the medial patellofemoral ligament: a systematic review of anatomy.
PURPOSE: The medial patellofemoral ligament (MPFL) is the major medial soft-tissue stabiliser of the patella, originating from the medial femoral condyle and inserting onto the medial patella. The exact position reported in the literature varies. Understanding the true anatomical origin and insertion of the MPFL is critical to successful reconstruction. The purpose of this systematic review was to determine these locations. METHODS: A systematic search of published (AMED, CINAHL, MEDLINE, EMBASE, PubMed and Cochrane Library) and unpublished literature databases was conducted from their inception to the 3 February 2016. All papers investigating the anatomy of the MPFL were eligible. Methodological quality was assessed using a modified CASP tool. A narrative analysis approach was adopted to synthesise the findings. RESULTS: After screening and review of 2045 papers, a total of 67 studies investigating the relevant anatomy were included. From this, the origin appears to be from an area rather than (as previously reported) a single point on the medial femoral condyle. The weighted average length was 56 mm with an 'hourglass' shape, fanning out at both ligament ends. CONCLUSION: The MPFL is an hourglass-shaped structure running from a triangular space between the adductor tubercle, medial femoral epicondyle and gastrocnemius tubercle and inserts onto the superomedial aspect of the patella. Awareness of anatomy is critical for assessment, anatomical repair and successful surgical patellar stabilisation. LEVEL OF EVIDENCE: Systematic review of anatomical dissections and imaging studies, Level IV
Medial patellofemoral ligament injury patterns and associated pathology in lateral patella dislocation: an MRI study
BACKGROUND: Lateral Patella dislocations are common injuries seen in the active and young adult populations. Our study focus was to evaluate medial patellofemoral ligament (MPFL) injury patterns and associated knee pathology using Magnetic Resonance Imaging studies.
METHODS: MRI studies taken at one imaging site between January, 2007 to January, 2008 with the final diagnosis of patella dislocation were screened for this study. Of the 324 cases that were found, 195 patients with lateral patellar dislocation traumatic enough to cause bone bruises on the lateral femoral trochlea and the medial facet of the patella were selected for this study. The MRI images were reviewed by three independent observers for location and type of MPFL injury, osteochondral defects, loose bodies, MCL and meniscus tears. The data was analyzed as a single cohort and by gender.
RESULTS: This study consisted of 127 males and 68 females; mean age of 23 yrs. Tear of the MPFL at the patellar attachment occurred in 93/195 knees (47%), at the femoral attachment in 50/195 knees (26%), and at both the femoral and patella attachment sites in 26/195 knees (13%). Attenuation of the MPFL without rupture occurred in 26/195 knees (13%). Associated findings included loose bodies in 23/195 (13%), meniscus tears 41/195 (21%), patella avulsion/fracture in 14/195 (7%), medial collateral ligament sprains/tears in 37/195 (19%) and osteochondral lesions in 96/195 knees (49%). Statistical analysis showed females had significantly more associated meniscus tears than the males (27% vs. 17%, p = 0.04). Although not statistically significant, osteochondral lesions were seen more in male patients with acute patella dislocation (52% vs. 42%, p = 0.08).
CONCLUSION: Patients who present with lateral patella dislocation with the classic bone bruise pattern seen on MRI will likely rupture the MPFL at the patellar side. Females are more likely to have an associated meniscal tear than males; however, more males have underlying osteochondral lesions. Given the high percentage of associated pathology, we recommend a MRI of the knee in all patients who present with acute patella dislocation
Construction of a Mean Square Error Adaptive Euler--Maruyama Method with Applications in Multilevel Monte Carlo
A formal mean square error expansion (MSE) is derived for Euler--Maruyama
numerical solutions of stochastic differential equations (SDE). The error
expansion is used to construct a pathwise a posteriori adaptive time stepping
Euler--Maruyama method for numerical solutions of SDE, and the resulting method
is incorporated into a multilevel Monte Carlo (MLMC) method for weak
approximations of SDE. This gives an efficient MSE adaptive MLMC method for
handling a number of low-regularity approximation problems. In low-regularity
numerical example problems, the developed adaptive MLMC method is shown to
outperform the uniform time stepping MLMC method by orders of magnitude,
producing output whose error with high probability is bounded by TOL>0 at the
near-optimal MLMC cost rate O(TOL^{-2}log(TOL)^4).Comment: 43 pages, 12 figure
Multilevel Monte Carlo methods
The author's presentation of multilevel Monte Carlo path simulation at the
MCQMC 2006 conference stimulated a lot of research into multilevel Monte Carlo
methods. This paper reviews the progress since then, emphasising the
simplicity, flexibility and generality of the multilevel Monte Carlo approach.
It also offers a few original ideas and suggests areas for future research
Assessment of the paraspinal muscles of subjects presenting an idiopathic scoliosis: an EMG pilot study
BACKGROUND: It is known that the back muscles of scoliotic subjects present abnormalities in their fiber type composition. Some researchers have hypothesized that abnormal fiber composition can lead to paraspinal muscle dysfunction such as poor neuromuscular efficiency and muscle fatigue. EMG parameters were used to evaluate these impairments. The purpose of the present study was to examine the clinical potential of different EMG parameters such as amplitude (RMS) and median frequency (MF) of the power spectrum in order to assess the back muscles of patients presenting idiopathic scoliosis in terms of their neuromuscular efficiency and their muscular fatigue. METHODS: L5/S1 moments during isometric efforts in extension were measured in six subjects with idiopathic scoliosis and ten healthy controls. The subjects performed three 7 s ramp contractions ranging from 0 to 100% maximum voluntary contraction (MVC) and one 30 s sustained contraction at 75% MVC. Surface EMG activity was recorded bilaterally from the paraspinal muscles at L5, L3, L1 and T10. The slope of the EMG RMS/force (neuromuscular efficiency) and MF/force (muscle composition) relationships were computed during the ramp contractions while the slope of the EMG RMS/time and MF/time relationships (muscle fatigue) were computed during the sustained contraction. Comparisons were performed between the two groups and between the left and right sides for the EMG parameters. RESULTS: No significant group or side differences between the slopes of the different measures used were found at the level of the apex (around T10) of the major curve of the spine. However, a significant side difference was seen at a lower level (L3, p = 0.01) for the MF/time parameter. CONCLUSION: The EMG parameters used in this study could not discriminate between the back muscles of scoliotic subjects and those of control subject regarding fiber type composition, neuromuscular efficiency and muscle fatigue at the level of the apex. The results of this pilot study indicate that compensatory strategies are potentially seen at lower level of the spine with these EMG parameters
The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations
The parieto-frontal cortical circuit that is active during action observation is the
circuit with mirror properties that has been most extensively studied. Yet, there remains
controversy on its role in social cognition and its contribution to understanding the actions
and intentions of other individuals. Recent studies in monkeys and humans have shed light
on what the parieto-frontal cortical circuit encodes and its possible functional relevance for
cognition. We conclude that, although there are several mechanisms through which one can
understand the behaviour of other individuals, the parieto-frontal mechanism is the only one
that allows an individual to understand the action of others \u2018from the inside\u2019 and gives the
observer a first-person grasp of the motor goals and intentions of other individuals
The biological control of seed-borne Alternaria brassicicola of cruciferous plants with a powdery preparation of Streptomyces sp.
vokKirjasto Aj-KAlternaria Brassiciola -sienien biloginen torjunta kaalikasvien siemeniltä jauhemaisella Streptomyces-bakteerivalmisteell
- …
