336 research outputs found
A Robust Cross-Linking Strategy for Block Copolymer Worms Prepared via Polymerization-Induced Self-Assembly
A poly(glycerol monomethacrylate) (PGMA) chain transfer agent is chain-extended by reversible addition-fragmentation chain transfer (RAFT) statistical copolymerization of 2-hydroxypropyl methacrylate (HPMA) with glycidyl methacrylate (GlyMA) in concentrated aqueous solution via polymerization-induced self-assembly (PISA). A series of five free-standing worm gels is prepared by fixing the overall degree of polymerization of the core-forming block at 144 while varying its GlyMA content from 0 to 20 mol %. 1H NMR kinetics indicated that GlyMA is consumed much faster than HPMA, producing a GlyMA-rich sequence close to the PGMA stabilizer block. Temperature-dependent oscillatory rheological studies indicate that increasing the GlyMA content leads to progressively less thermoresponsive worm gels, with no degelation on cooling being observed for worms containing 20 mol % GlyMA. The epoxy groups in the GlyMA residues can be ring-opened using 3-aminopropyltriethoxysilane (APTES) in order to prepare core cross-linked worms via hydrolysis-condensation with the siloxane groups and/or hydroxyl groups on the HPMA residues. Perhaps surprisingly, 1H NMR analysis indicates that the epoxy-amine reaction and the intermolecular cross-linking occur on similar time scales. Cross-linking leads to stiffer worm gels that do not undergo degelation upon cooling. Dynamic light scattering studies and TEM analyses conducted on linear worms exposed to either methanol (a good solvent for both blocks) or anionic surfactant result in immediate worm dissociation. In contrast, cross-linked worms remain intact under such conditions, provided that the worm cores comprise at least 10 mol % GlyMA
Fermi Surface of the Electron-doped Cuprate Superconductor Nd_{2-x}Ce_xCuO_{4} Probed by High-Field Magnetotransport
We report on the study of the Fermi surface of the electron-doped cuprate
superconductor NdCeCuO by measuring the interlayer
magnetoresistance as a function of the strength and orientation of the applied
magnetic field. We performed experiments in both steady and pulsed magnetic
fields on high-quality single crystals with Ce concentrations of to
0.17. In the overdoped regime of we found both semiclassical
angle-dependent magnetoresistance oscillations (AMRO) and Shubnikov-de Haas
(SdH) oscillations. The combined AMRO and SdH data clearly show that the
appearance of fast SdH oscillations in strongly overdoped samples is caused by
magnetic breakdown. This observation provides clear evidence for a
reconstructed multiply-connected Fermi surface up to the very end of the
overdoped regime at . The strength of the superlattice potential
responsible for the reconstructed Fermi surface is found to decrease with
increasing doping level and likely vanishes at the same carrier concentration
as superconductivity, suggesting a close relation between translational
symmetry breaking and superconducting pairing. A detailed analysis of the
high-resolution SdH data allowed us to determine the effective cyclotron mass
and Dingle temperature, as well as to estimate the magnetic breakdown field in
the overdoped regime.Comment: 23 pages, 8 figure
Spatial Correlation of Conduction Electrons in Metal with Complicated Geometry Of The Fermi Surface
The "density-density" correlation function of conduction electrons in metal
is investigated. It is shown, that the asymptotic behaviour of the CF depends
on the shape and the local geometry of the Fermi surface. In particular, the
exponent of power law which describes the damping of Friedel oscillations at
large r (-4 for an isotropic Fermi gas) is determined by local geometry of the
FS. The applications of the obtained results to calculations of the CF in a
metal near the electron topological transition and of the RKKY exchange
integral are considered as well.Comment: 12 pages, LaTeX, 5 figures upon request (to appear in J.Phys.:CM,
1993
Exploring attitudes to edgy urban destinations: the case of Deptford, London
The role of tourists and tourism in urban development is not fully understood. Research has focused on tourism districts within city centres, but less is known about tourism in peripheral, less affluent urban districts. These areas can appeal to visitors as edgy alternatives to mainstream destinations. This study establishes who is interested in visiting and why, and it explores the underlying rationale for negative attitudes. The aims are addressed by an in-depth analysis of Deptford in South East London. This area is a relatively deprived part of a world city, albeit one that has long been earmarked as London's next cool district. The study uses a mix of different sources to analyse the case. Responses to a New York Times article on Deptford are analysed and the attitudes of actual visitors and key stakeholders are explored. The discussion includes an examination of different interpretations and attitudes towards the notion of edginess. Edginess is deemed attractive by certain audiences; something linked to a reverence for working-class life in the arts. The study concludes that, whilst edginess is a noted characteristic, what people appreciate about Deptford is its ‘distinctive ordinariness’ – its contrast with more polished and contrived urban districts
Reflections on undertaking the Probation Qualifying Framework scheme during the transforming rehabilitation changes
This article reflects upon the author’s experience of undertaking the PQF (Probation Qualifying Framework) training scheme during the chaotic period of Transforming Rehabilitation. The author asserts that the uncertainty and precarious nature of the changes were detrimental to an effective learning environment, which ultimately promoted a practice culture of punitiveness and control and did not allow learners the space to be skilful and confident practitioners, comfortable working autonomously. Furthermore, the author contends there is an emerging culture within the NPS (National Probation Service) increasingly fostered on ‘risk management’, which is reflected in the vocational nature of PQF training and is contributing towards a widening cultural gap that is emerging between the community rehabilitation companies and NPS
Importance of Correlation Effects on Magnetic Anisotropy in Fe and Ni
We calculate magnetic anisotropy energy of Fe and Ni by taking into account
the effects of strong electronic correlations, spin-orbit coupling, and
non-collinearity of intra-atomic magnetization. The LDA+U method is used and
its equivalence to dynamical mean-field theory in the static limit is
emphasized. Both experimental magnitude of MAE and direction of magnetization
are predicted correctly near U=4 eV for Ni and U=3.5 eV for Fe. Correlations
modify one-electron spectra which are now in better agreement with experiments.Comment: 4 pages, 2 figure
Voltammetry and single-molecule in situ scanning tunneling microscopy of laccases and bilirubin oxidase in electrocatalytic dioxygen reduction on Au(111) single-crystal electrodes
Photochemical dihydrogen production using an analogue of the active site of [NiFe] hydrogenase
The photoproduction of dihydrogen (H2) by a low molecular weight analogue of the active site of [NiFe] hydrogenase has been investigated by the reduction of the [NiFe2] cluster, 1, by a photosensitier PS (PS = [ReCl(CO)3(bpy)] or [Ru(bpy)3][PF6]2). Reductive quenching of the 3MLCT excited state of the photosensitiser by NEt3 or N(CH2CH2OH)3 (TEOA) generates PS•−, and subsequent intermolecular electron transfer to 1 produces the reduced anionic form of 1. Time-resolved infrared spectroscopy (TRIR) has been used to probe the intermediates throughout the reduction of 1 and subsequent photocatalytic H2 production from [HTEOA][BF4], which was monitored by gas chromatography. Two structural isomers of the reduced form of 1 (1a•− and 1b•−) were detected by Fourier transform infrared spectroscopy (FTIR) in both CH3CN and DMF (dimethylformamide), while only 1a•− was detected in CH2Cl2. Structures for these intermediates are proposed from the results of density functional theory calculations and FTIR spectroscopy. 1a•− is assigned to a similar structure to 1 with six terminal carbonyl ligands, while calculations suggest that in 1b•− two of the carbonyl groups bridge the Fe centres, consistent with the peak observed at 1714 cm−1 in the FTIR spectrum for 1b•− in CH3CN, assigned to a ν(CO) stretching vibration. The formation of 1a•− and 1b•− and the production of H2 was studied in CH3CN, DMF and CH2Cl2. Although the more catalytically active species (1a•− or 1b•−) could not be determined, photocatalysis was observed only in CH3CN and DMF
Wiring of Photosystem II to Hydrogenase for Photoelectrochemical Water Splitting.
In natural photosynthesis, light is used for the production of chemical energy carriers to fuel biological activity. The re-engineering of natural photosynthetic pathways can provide inspiration for sustainable fuel production and insights for understanding the process itself. Here, we employ a semiartificial approach to study photobiological water splitting via a pathway unavailable to nature: the direct coupling of the water oxidation enzyme, photosystem II, to the H2 evolving enzyme, hydrogenase. Essential to this approach is the integration of the isolated enzymes into the artificial circuit of a photoelectrochemical cell. We therefore developed a tailor-made hierarchically structured indium-tin oxide electrode that gives rise to the excellent integration of both photosystem II and hydrogenase for performing the anodic and cathodic half-reactions, respectively. When connected together with the aid of an applied bias, the semiartificial cell demonstrated quantitative electron flow from photosystem II to the hydrogenase with the production of H2 and O2 being in the expected two-to-one ratio and a light-to-hydrogen conversion efficiency of 5.4% under low-intensity red-light irradiation. We thereby demonstrate efficient light-driven water splitting using a pathway inaccessible to biology and report on a widely applicable in vitro platform for the controlled coupling of enzymatic redox processes to meaningfully study photocatalytic reactions.This work was supported by the U.K. Engineering and Physical Sciences Research Council (EP/H00338X/2 to E.R. and EP/G037221/1, nanoDTC, to D.M.), the UK Biology and Biotechnological Sciences Research Council (BB/K002627/1 to A.W.R. and BB/K010220/1 to E.R.), a Marie Curie Intra-European Fellowship (PIEF-GA-2013-625034 to C.Y.L), a Marie Curie International Incoming Fellowship (PIIF-GA-2012-328085 RPSII to J.J.Z) and the CEA and the CNRS (to J.C.F.C.). A.W.R. holds a Wolfson Merit Award from the Royal Society.This is the final version of the article. It first appeared from ACS Publications via http://dx.doi.org/10.1021/jacs.5b0373
- …
