847 research outputs found
Математическое моделирование взаимодействия верхового лесного пожара с противопожарным разрывом конечных размеров
Analysis of dependence of the critical dimensions of fire ruptures on the main characteristics of forests and wind speed. As a result of the numerical integration of fields was obtained the temperature distribution, oxygen concentration and volatile combustible pyrolysis products
The importance of initial-final state correlations for the formation of fragments in heavy ion collisions
Using quantum molecular dynamics simulations, we investigate the formation of
fragments in symmetric reactions between beam energies of E=30AMeV and 600AMeV.
After a comparison with existing data we investigate some observables relevant
to tackle equilibration: dsigma/dErat, the double differential cross section
dsigma/pt.dpz.dpt,... Apart maybe from very energetic E>400AMeV and very
central reactions, none of our simulations gives evidence that the system
passes through a state of equilibrium. Later, we address the production
mechanisms and find that, whatever the energy, nucleons finally entrained in a
fragment exhibit strong initial-final state correlations, in coordinate as well
as in momentum space. At high energy those correlations resemble the ones
obtained in the participant-spectator model. At low energy the correlations are
equally strong, but more complicated; they are a consequence of the Pauli
blocking of the nucleon-nucleon collisions, the geometry, and the excitation
energy. Studying a second set of time-dependent variables (radii,
densities,...), we investigate in details how those correlations survive the
reaction especially in central reactions where the nucleons have to pass
through the whole system. It appears that some fragments are made of nucleons
which were initially correlated, whereas others are formed by nucleons
scattered during the reaction into the vicinity of a group of previously
correlated nucleons.Comment: 45 pages text + 20 postscript figures Accepted for publication in
Physical Review
Break-up stage restoration in multifragmentation reactions
In the case of Xe+Sn at 32 MeV/nucleon multifragmentation reaction break-up
fragments are built-up from the experimentally detected ones using evaluations
of light particle evaporation multiplicities which thus settle fragment
internal excitation. Freeze-out characteristics are extracted from experimental
kinetic energy spectra under the assumption of full decoupling between fragment
formation and energy dissipated in different degrees of freedom. Thermal
kinetic energy is determined uniquely while for freeze-out volume - collective
energy a multiple solution is obtained. Coherence between the solutions of the
break-up restoration algorithm and the predictions of a multifragmentation
model with identical definition of primary fragments is regarded as a way to
select the true value. The broad kinetic energy spectrum of He is
consistent with break-up genesis of this isotope.Comment: 17 pages, 5 figure
Breakup Density in Spectator Fragmentation
Proton-proton correlations and correlations of protons, deuterons and tritons
with alpha particles from spectator decays following 197Au + 197Au collisions
at 1000 MeV per nucleon have been measured with two highly efficient detector
hodoscopes. The constructed correlation functions, interpreted within the
approximation of a simultaneous volume decay, indicate a moderate expansion and
low breakup densities, similar to assumptions made in statistical
multifragmentation models.
PACS numbers: 25.70.Pq, 21.65.+f, 25.70.Mn, 25.75.GzComment: 11 pages, LaTeX with 3 included figures; Also available from
http://www-kp3.gsi.de/www/kp3/aladin_publications.htm
Pion radii in nonlocal chiral quark model
The electromagnetic radius of the charged pion and the transition radius of
the neutral pion are calculated in the framework of the nonlocal chiral quark
model. It is shown in this model that the contributions of vector mesons to the
pion radii are noticeably suppressed in comparison with a similar contribution
in the local Nambu--Jona-Lasinio model. The form-factor for the process
gamma*pi+pi- is calculated for the -1 GeV^2<q^2<1.6 GeV^2. Our results are in
satisfactory agreement with experimental data.Comment: 7 pages, 7 figure
Statistical Multifragmentation of Non-Spherical Expanding Sources in Central Heavy-Ion Collisions
We study the anisotropy effects measured with INDRA at GSI in central
collisions of Xe+Sn at 50 A.MeV and Au+Au at 60, 80, 100 A.MeV incident energy.
The microcanonical multifragmentation model with non-spherical sources is used
to simulate an incomplete shape relaxation of the multifragmenting system. This
model is employed to interpret observed anisotropic distributions in the
fragment size and mean kinetic energy. The data can be well reproduced if an
expanding prolate source aligned along the beam direction is assumed. An either
non-Hubblean or non-isotropic radial expansion is required to describe the
fragment kinetic energies and their anisotropy. The qualitative similarity of
the results for the studied reactions suggests that the concept of a
longitudinally elongated freeze-out configuration is generally applicable for
central collisions of heavy systems. The deformation decreases slightly with
increasing beam energy.Comment: 35 pages, 19 figures, submitted to Nuclear Physics
Cosmic-ray strangelets in the Earth's atmosphere
If strange quark matter is stable in small lumps, we expect to find such
lumps, called ``strangelets'', on Earth due to a steady flux in cosmic rays.
Following recent astrophysical models, we predict the strangelet flux at the
top of the atmosphere, and trace the strangelets' behavior in atmospheric
chemistry and circulation. We show that several strangelet species may have
large abundances in the atmosphere; that they should respond favorably to
laboratory-scale preconcentration techniques; and that they present promising
targets for mass spectroscopy experiments.Comment: 28 pages, 4 figures, revtex
The Spitzer Spectroscopic Survey of S-type Stars
S-type AGB stars are thought to be in the transitional phase between M-type
and C-type AGB stars. Because of their peculiar chemical composition, one may
expect a strong influence of the stellar C/O ratio on the molecular chemistry
and the mineralogy of the circumstellar dust. In this paper, we present a large
sample of 87 intrinsic galactic S-type AGB stars, observed at infrared
wavelengths with the Spitzer Space Telescope, and supplemented with
ground-based optical data. On the one hand, we derive the stellar parameters
from the optical spectroscopy and photometry, using a grid of model
atmospheres. On the other, we decompose the infrared spectra to quantify the
flux-contributions from the different dust species. Finally, we compare the
independently determined stellar parameters and dust properties. For the stars
without significant dust emission, we detect a strict relation between the
presence of SiS absorption in the Spitzer spectra and the C/O ratio of the
stellar atmosphere. These absorption bands can thus be used as an additional
diagnostic for the C/O ratio. For stars with significant dust emission, we
define three groups, based on the relative contribution of certain dust species
to the infrared flux. We find a strong link between group-membership and C/O
ratio. We show that these groups can be explained by assuming that the
dust-condensation can be cut short before silicates are produced, while the
remaining free atoms and molecules can then form the observed magnesium
sulfides or the carriers of the unidentified 13 and 20 micron features.
Finally, we present the detection of emission features attributed to molecules
and dust characteristic to C-type stars, such as molecular SiS, hydrocarbons
and magnesium sulfide grains. We show that we often detect magnesium sulfides
together with molecular SiS and we propose that it is formed by a reaction of
SiS molecules with Mg.Comment: Accepted for publication in A&
The mid-infrared diameter of W Hydrae
Mid-infrared (8-13 microns) interferometric data of W Hya were obtained with
MIDI/VLTI between April 2007 and September 2009, covering nearly three
pulsation cycles. The spectrally dispersed visibility data of all 75
observations were analyzed by fitting a circular fully limb-darkened disk (FDD)
model to all data and individual pulsation phases. Asymmetries were studied
with an elliptical FDD. Modeling results in an apparent angular FDD diameter of
W Hya of about (80 +/- 1.2) mas (7.8 AU) between 8 and 10 microns, which
corresponds to an about 1.9 times larger diameter than the photospheric one.
The diameter gradually increases up to (105 +/- 1.2) mas (10.3 AU) at 12
microns. In contrast, the FDD relative flux fraction decreases from (0.85 +/-
0.02) to (0.77 +/- 0.02), reflecting the increased flux contribution from a
fully resolved surrounding silicate dust shell. The asymmetric character of the
extended structure could be confirmed. An elliptical FDD yields a position
angle of (11 +/- 20) deg and an axis ratio of (0.87 +/- 0.07). A weak pulsation
dependency is revealed with a diameter increase of (5.4 +/- 1.8) mas between
visual minimum and maximum, while detected cycle-to-cycle variations are
smaller. W Hya's diameter shows a behavior that is very similar to the Mira
stars RR Sco and S Ori and can be described by an analogous model. The constant
diameter part results from a partially resolved stellar disk, including a close
molecular layer of H2O, while the increase beyond 10 microns can most likely be
attributed to the contribution of a spatially resolved nearby Al2O3 dust shell.Comment: 18 pages, 16 figure
- …
