197 research outputs found
On the Unruh effect in de Sitter space
We give an interpretation of the temperature in de Sitter universe in terms
of a dynamical Unruh effect associated with the Hubble sphere. As with the
quantum noise perceived by a uniformly accelerated observer in static
space-times, observers endowed with a proper motion can in principle detect the
effect. In particular, we study a "Kodama observer" as a two-field Unruh
detector for which we show the effect is approximately thermal. We also
estimate the back-reaction of the emitted radiation and find trajectories
associated with the Kodama vector fields are stable.Comment: 8 pages; corrected typos; sections structure revise
Hamilton-Jacobi Method and Gravitation
Studying the behaviour of a quantum field in a classical, curved, spacetime
is an extraordinary task which nobody is able to take on at present time.
Independently by the fact that such problem is not likely to be solved soon,
still we possess the instruments to perform exact predictions in special,
highly symmetric, conditions. Aim of the present contribution is to show how it
is possible to extract quantitative information about a variety of physical
phenomena in very general situations by virtue of the so-called Hamilton-Jacobi
method. In particular, we shall prove the agreement of such semi-classical
method with exact results of quantum field theoretic calculations.Comment: To appear in the proceedings of "Cosmology, the Quantum Vacuum, and
Zeta Functions": A workshop with a celebration of Emilio Elizalde's Sixtieth
birthday, Bellaterra, Barcelona, Spain, 8-10 Mar 201
On tunneling across horizons
The tunneling method for stationary black holes in the Hamilton-Jacobi
variant is reconsidered in the light of various critiques that have been moved
against. It is shown that once the tunneling trajectories have been correctly
identified the method isfree from internal inconsistencies, it is manifestly
covariant, it allows for the extension to spinning particles and it can even be
used without solving the Hamilton-Jacobi equation. These conclusions borrow
support on a simple analytic continuation of the classical action of a
pointlike particle, made possible by the unique assumption that it should be
analytic in complexified Schwarzschild or Kerr-Newman spacetimes. A more
general version of the Parikh-Wilczek method will also be proposed along these
lines.Comment: Latex Document, 5 pages, 2 figures, title changed, abstract changed,
added references, results unchange
On the alumina dust production in the winds of O-rich Asymptotic Giant Branch stars
The O-rich Asymptotic Giant Branch (AGB) stars experience strong mass loss
with efficient dust condensation and they are major sources of dust in the
interstellar medium. Alumina dust (AlO) is an important dust component
in O-rich circumstellar shells and it is expected to be fairly abundant in the
winds of the more massive and O-rich AGB stars. By coupling AGB stellar
nucleosynthesis and dust formation, we present a self-consistent exploration on
the AlO production in the winds of AGB stars with progenitor masses
between 3 and 7 M and metallicities in the range 0.0003 Z
0.018. We find that AlO particles form at radial distances from
the centre between and 4 R (depending on metallicity), which is in
agreement with recent interferometric observations of Galactic O-rich AGB
stars. The mass of AlO dust is found to scale almost linearly with
metallicity, with solar metallicity AGBs producing the highest amount (about
10 M) of alumina dust. The AlO grain size decreases
with decreasing metallicity (and initial stellar mass) and the maximum size of
the AlO grains is 0.075 for the solar metallicity models.
Interestingly, the strong depletion of gaseous Al observed in the
low-metallicity HBB AGB star HV 2576 seems to be consistent with the formation
of AlO dust as predicted by our models. We suggest that the content of
Al may be used as a mass (and evolutionary stage) indicator in AGB stars
experiencing HBB.Comment: 13 pages, 8 figures, accepted for publication in MNRA
On the semiclassical treatment of Hawking radiation
In the context of the semiclassical treatment of Hawking radiation we prove
the universality of the reduced canonical momentum for the system of a massive
shell self gravitating in a spherical gravitational field within the Painlev\'e
family of gauges. We show that one can construct modes which are regular on the
horizon both by considering as hamiltonian the exterior boundary term and by
using as hamiltonian the interior boundary term. The late time expansion is
given in both approaches and their time Fourier expansion computed to reproduce
the self reaction correction to the Hawking spectrum.Comment: 18 pages, LaTeX, Corrected typo
Dissecting the Spitzer color-magnitude diagrams of extreme LMC AGB stars
We trace the full evolution of low- and intermediate-mass stars () during the Asymptotic Giant Branch (AGB) phase in the
{\it Spitzer} two-color and color-magnitude diagrams. We follow the formation
and growth of dust particles in the circumstellar envelope with an
isotropically expanding wind, in which gas molecules impinge upon pre--existing
seed nuclei, favour their growth. These models are the first able to identify
the main regions in the {\it Spitzer} data occupied by AGB stars in the Large
Magellanic Cloud (LMC). The main diagonal sequence traced by LMC extreme stars
in the [3.6]-[4.5] vs. [5.8]-[8.0] and [3.6]-[8.0] vs. [8.0] planes are nicely
fit by carbon stars models; it results to be an evolutionary sequence with the
reddest objects being at the final stages of their AGB evolution. The most
extreme stars, with [3.6]-[4.5] 1.5 and [3.6]-[8.0] 3, are 2.5-3
stars surrounded by solid carbon grains. In higher mass () models dust formation is driven by the extent of Hot Bottom Burning
(HBB) - most of the dust formed is in the form of silicates and the maximum
obscuration phase by dust particles occurs when the HBB experienced is
strongest, before the mass of the envelope is considerably reduced.Comment: 5 pages, 2 figures, accepted for publication in MNRAS Letter
AGB stars in the SMC: evolution and dust properties based on Spitzer observations
We study the population of asymptotic giant branch (AGB) stars in the Small
Magellanic Cloud (SMC) by means of full evolutionary models of stars of mass
1Msun < M < 8Msun, evolved through the thermally pulsing phase. The models also
account for dust production in the circumstellar envelope. We compare Spitzer
infrared colours with results from theoretical modelling. We show that ~75% of
the AGB population of the SMC is composed by scarcely obscured objects, mainly
stars of mass M < 2.5Msun at various metallicity, formed between 700 Myr and 5
Gyr ago; ~ 70% of these sources are oxygen--rich stars, while ~ 30% are
C-stars. The sample of the most obscured AGB stars, accounting for ~ 25% of the
total sample, is composed almost entirely by carbon stars. The distribution in
the colour-colour ([3.6]-[4.5], [5.8]-[8.0]) and colour-magnitude ([3.6]-[8.0],
[8.0]) diagrams of these C-rich objects, with a large infrared emission, traces
an obscuration sequence, according to the amount of carbonaceous dust in their
surroundings. The overall population of C-rich AGB stars descends from
1.5-2Msun stars of metallicity Z=0.004, formed between 700 Myr and 2 Gyr ago,
and from lower metallicity objects, of mass below 1.5Msun, 2-5 Gyr old. We also
identify obscured oxygen-rich stars (M ~ 4-6Msun) experiencing hot bottom
burning. The differences between the AGB populations of the SMC and LMC are
also commented.Comment: 18, pages, 11 figures, accepted for publication on MNRA
- …
