3,717 research outputs found
Viscous to Inertial Crossover in Liquid Drop Coalescence
Using an electrical method and high-speed imaging we probe drop coalescence
down to 10 ns after the drops touch. By varying the liquid viscosity over two
decades, we conclude that at sufficiently low approach velocity where
deformation is not present, the drops coalesce with an unexpectedly late
crossover time between a regime dominated by viscous and one dominated by
inertial effects. We argue that the late crossover, not accounted for in the
theory, can be explained by an appropriate choice of length-scales present in
the flow geometry.Comment: 4 pages, 4 figure
Memory formation in matter
Memory formation in matter is a theme of broad intellectual relevance; it
sits at the interdisciplinary crossroads of physics, biology, chemistry, and
computer science. Memory connotes the ability to encode, access, and erase
signatures of past history in the state of a system. Once the system has
completely relaxed to thermal equilibrium, it is no longer able to recall
aspects of its evolution. Memory of initial conditions or previous training
protocols will be lost. Thus many forms of memory are intrinsically tied to
far-from-equilibrium behavior and to transient response to a perturbation. This
general behavior arises in diverse contexts in condensed matter physics and
materials: phase change memory, shape memory, echoes, memory effects in
glasses, return-point memory in disordered magnets, as well as related contexts
in computer science. Yet, as opposed to the situation in biology, there is
currently no common categorization and description of the memory behavior that
appears to be prevalent throughout condensed-matter systems. Here we focus on
material memories. We will describe the basic phenomenology of a few of the
known behaviors that can be understood as constituting a memory. We hope that
this will be a guide towards developing the unifying conceptual underpinnings
for a broad understanding of memory effects that appear in materials
Multiple transient memories in sheared suspensions: robustness, structure, and routes to plasticity
Multiple transient memories, originally discovered in charge-density-wave
conductors, are a remarkable and initially counterintuitive example of how a
system can store information about its driving. In this class of memories, a
system can learn multiple driving inputs, nearly all of which are eventually
forgotten despite their continual input. If sufficient noise is present, the
system regains plasticity so that it can continue to learn new memories
indefinitely. Recently, Keim & Nagel showed how multiple transient memories
could be generalized to a generic driven disordered system with noise, giving
as an example simulations of a simple model of a sheared non-Brownian
suspension. Here, we further explore simulation models of suspensions under
cyclic shear, focussing on three main themes: robustness, structure, and
overdriving. We show that multiple transient memories are a robust feature
independent of many details of the model. The steady-state spatial distribution
of the particles is sensitive to the driving algorithm; nonetheless, the memory
formation is independent of such a change in particle correlations. Finally, we
demonstrate that overdriving provides another means for controlling memory
formation and retention
Multiple transient memories in experiments on sheared non-Brownian suspensions
A system with multiple transient memories can remember a set of inputs but
subsequently forgets almost all of them, even as they are continually applied.
If noise is added, the system can store all memories indefinitely. The
phenomenon has recently been predicted for cyclically sheared non-Brownian
suspensions. Here we present experiments on such suspensions, finding behavior
consistent with multiple transient memories and showing how memories can be
stabilized by noise.Comment: 5 pages, 4 figure
Quantum state estimation and large deviations
In this paper we propose a method to estimate the density matrix \rho of a
d-level quantum system by measurements on the N-fold system. The scheme is
based on covariant observables and representation theory of unitary groups and
it extends previous results concerning the estimation of the spectrum of \rho.
We show that it is consistent (i.e. the original input state \rho is recovered
with certainty if N \to \infty), analyze its large deviation behavior, and
calculate explicitly the corresponding rate function which describes the
exponential decrease of error probabilities in the limit N \to \infty. Finally
we discuss the question whether the proposed scheme provides the fastest
possible decay of error probabilities.Comment: LaTex2e, 40 pages, 2 figures. Substantial changes in Section 4: one
new subsection (4.1) and another (4.2 was 4.1 in the previous version)
completely rewritten. Minor changes in Sect. 2 and 3. Typos corrected.
References added. Accepted for publication in Rev. Math. Phy
The inexorable resistance of inertia determines the initial regime of drop coalescence
Drop coalescence is central to diverse processes involving dispersions of
drops in industrial, engineering and scientific realms. During coalescence, two
drops first touch and then merge as the liquid neck connecting them grows from
initially microscopic scales to a size comparable to the drop diameters. The
curvature of the interface is infinite at the point where the drops first make
contact, and the flows that ensue as the two drops coalesce are intimately
coupled to this singularity in the dynamics. Conventionally, this process has
been thought to have just two dynamical regimes: a viscous and an inertial
regime with a crossover region between them. We use experiments and simulations
to reveal that a third regime, one that describes the initial dynamics of
coalescence for all drop viscosities, has been missed. An argument based on
force balance allows the construction of a new coalescence phase diagram
The effects of nuclear spins on the quantum relaxation of the magnetization for the molecular nanomagnet Fe_8
The strong influence of nuclear spins on resonant quantum tunneling in the
molecular cluster Fe_8 is demonstrated for the first time by comparing the
relaxation rate of the standard Fe_8 sample with two isotopic modified samples:
(i) 56_Fe is replaced by 57_Fe, and (ii) a fraction of 1_H is replaced by 2_H.
By using a recently developed "hole digging" method, we measured an intrinsic
broadening which is driven by the hyperfine fields. Our measurements are in
good agreement with numerical hyperfine calculations. For T > 1.5 K, the
influence of nuclear spins on the relaxation rate is less important, suggesting
that spin-phonon coupling dominates the relaxation rate at higher temperature.Comment: 4 pages, 5 figure
Tuning Magnetic Avalanches in Mn12-ac
Using micron-sized Hall sensor arrays to obtain time-resolved measurements of
the local magnetization, we report a systematic study in the molecular magnet
Mn-acetate of magnetic avalanches controllably triggered in different
fixed external magnetic fields and for different values of the initial
magnetization. The speeds of propagation of the spin-reversal fronts are in
good overall agreement with the theory of magnetic deflagration of Garanin and
Chudnovsky \cite{Garanin}.Comment: 8 pages, 7 figures; discussion expanded and revise
Quantum Hole Digging in Magnetic Molecular Clusters
Below 360 mK, Fe8 magnetic molecular clusters are in the pure quantum
relaxation regime. We showed recently that the predicted ``square-root time''
relaxation is obeyed, allowing us to develop a new method for watching the
evolution of the distribution of molecular spin states in the sample. We
measured the distribution P(H) of molecules which are in resonance at the
applied field H. Tunnelling initially causes rapid transitions of molecules,
thereby ``digging a hole'' in P(H). For small initial magnetisation values, the
hole width shows an intrinsic broadening which may be due to nuclear spins. We
present here hole digging measurements in the thermal activated regime which
may allow to study the effect of spin-phonon coupling.Comment: 3 pages, 2 figures, conference proceedings of LT22 (Helsinki,
Finland, August 4-11, 1999
- …
