115 research outputs found

    Development of an apparatus for obtaining molecular beams in the energy range from 2 to 200 eV

    Get PDF
    The formation and detection of molecular beams obtained by charge exchange from a low-energy ion source is discussed. Dispersion in energy of the ion source was measured and problems concerning detection of neutral beams were studied. Various methods were used, specifically secondary electron emissivity of a metallic surface and ionization of a gas target with a low ionization voltage. The intensities of neutral beams as low as 10 eV are measured by a tubular electron multiplier and a lock-in amplifier

    Nuclear Interactions of 400 GeV Protons in Emulsion

    Get PDF
    We report on 400 GeV proton-emulsion nucleus reactions and compare the results to hadron-nucleus reactions at smaller energies. In particular we present results on the emission of fast target protons (essentially grey track particles) and on their correlation with the number of collisions inside the nucleus, ν, with the number of charged evaporated particles (essentially black track particles) and with the number of pions produced (essentially shower particles). We observe that the main features of the 200¿400 GeV data are very similar. However, we find that the mean shower-particle multiplicity at 400 GeV is essentially higher than expected from the simple independent particle model prediction 〈ns〉 = 〈nch〉[1 + 0.5(〈ν〉 − 1)]. The shower particle multiplicities do not seem to follow a target mass dependence of the form 〈ns〉 = 〈nch〉 Aα with α = 0.14 or α = 0.19 as has been suggested in the literature. The pseudo-rapidity distribution shows limiting target and projectile fragmentation. The shower-particle multiplicity in the ¿central region¿ increases linearity with 〈ν〉 but faster than 0.5〈ν〉 times the corresponding multiplicity in pp reactions

    Propositional Tree Automata

    Get PDF
    In the paper, we introduce a new tree automata framework, called propositional tree automata, capturing the class of tree languages that are closed under an equational theory and Boolean operations. This framework originates in work on developing a sufficient completeness checker for specifications with rewriting modulo an equational theory. Propositional tree automata recognize regular equational tree languages. However, unlike regular equational tree automata, the class of propositional tree automata is closed under Boolean operations. This extra expressiveness does not affect the decidability of the membership problem. This paper also analyzes in detail the emptiness problem for propositional tree automata with associative theories. Though undecidable in general, we present a semi-algorithm for checking emptiness based on machine learning that we have found useful in practice

    Le Valet De Deux Maitres; Opéra En Un Acte

    No full text

    PR3 Industry Preparedness against German reforms

    Get PDF

    Experimental study of the velocity field in a vortex-flow heat exchanger with isothermal conditions

    Full text link
    corecore