2,266 research outputs found
Quantum ratchets in dissipative chaotic systems
Using the method of quantum trajectories we study a quantum chaotic
dissipative ratchet appearing for particles in a pulsed asymmetric potential in
the presence of a dissipative environment. The system is characterized by
directed transport emerging from a quantum strange attractor. This model
exhibits, in the limit of small effective Planck constant, a transition from
quantum to classical behavior, in agreement with the correspondence principle.
We also discuss parameter values suitable for implementation of the quantum
ratchet effect with cold atoms in optical lattices.Comment: Significant changes: Several text improvements and new results.
Figure 2 modified. Figure 4 adde
Size, shape, and flexibility of RNA structures
Determination of sizes and flexibilities of RNA molecules is important in
understanding the nature of packing in folded structures and in elucidating
interactions between RNA and DNA or proteins. Using the coordinates of the
structures of RNA in the Protein Data Bank we find that the size of the folded
RNA structures, measured using the radius of gyration, , follows the Flory
scaling law, namely, \AA where N is the number of
nucleotides. The shape of RNA molecules is characterized by the asphericity
and the shape parameters that are computed using the eigenvalues
of the moment of inertia tensor. From the distribution of , we find
that a large fraction of folded RNA structures are aspherical and the
distribution of values shows that RNA molecules are prolate (). The
flexibility of folded structures is characterized by the persistence length
. By fitting the distance distribution function to the worm-like
chain model we extracted the persistence length . We find that \AA. The dependence of on implies the average length of
helices should increases as the size of RNA grows. We also analyze packing in
the structures of ribosomes (30S, 50S, and 70S) in terms of , ,
, and . The 70S and the 50S subunits are more spherical compared to
most RNA molecules. The globularity in 50S is due to the presence of an
unusually large number (compared to 30S subunit) of small helices that are
stitched together by bulges and loops. Comparison of the shapes of the intact
70S ribosome and the constituent particles suggests that folding of the
individual molecules might occur prior to assembly.Comment: 28 pages, 8 figures, J. Chem. Phys. in pres
Locally Optimally Emitting Clouds and the Origin of Quasar Emission Lines
The similarity of quasar line spectra has been taken as an indication that
the emission line clouds have preferred parameters, suggesting that the
environment is subject to a fine tuning process. We show here that the observed
spectrum is a natural consequence of powerful selection effects. We computed a
large grid of photoionization models covering the widest possible range of
cloud gas density and distance from the central continuum source. For each line
only a narrow range of density and distance from the continuum source results
in maximum reprocessing efficiency, corresponding to ``locally
optimally-emitting clouds'' (LOC). These parameters depend on the ionization
and excitation potentials of the line, and its thermalization density. The mean
QSO line spectrum can be reproduced by simply adding together the full family
of clouds, with an appropriate covering fraction distribution. The observed
quasar spectrum is a natural consequence of the ability of various clouds to
reprocess the underlying continuum, and can arise in a chaotic environment with
no preferred pressure, gas density, or ionization parameter.Comment: 9 pages including 1 ps figure. LaTeX format using aaspp4.st
Teachers developing assessment for learning: impact on student achievement
While it is generally acknowledged that increased use of formative assessment (or assessment for learning) leads to higher quality learning, it is often claimed that the pressure in schools to improve the results achieved by students in externally-set tests and examinations precludes its use. This paper reports on the achievement of secondary school students who worked in classrooms where teachers made time to develop formative assessment strategies. A total of 24 teachers (2 science and 2 mathematics teachers, in each of six schools in two LEAs) were supported over a six-month period in exploring and planning their approach to formative assessment, and then, beginning in September 1999, the teachers put these plans into action with selected classes. In order to compute effect sizes, a measure of prior attainment and at least one comparison group was established for each class (typically either an equivalent class taught in the previous year by the same teacher, or a parallel class taught by another teacher). The mean effect size was 0.32
Double butterfly spectrum for two interacting particles in the Harper model
We study the effect of interparticle interaction on the spectrum of the
Harper model and show that it leads to a pure-point component arising from the
multifractal spectrum of non interacting problem. Our numerical studies allow
to understand the global structure of the spectrum. Analytical approach
developed permits to understand the origin of localized states in the limit of
strong interaction and fine spectral structure for small .Comment: revtex, 4 pages, 5 figure
Hundred photon microwave ionization of Rydberg atoms in a static electric field
We present analytical and numerical results for the microwave excitation of
nonhydrogenic atoms in a static electric field when up to 1000 photons are
required to ionize an atom. For small microwave fields, dynamical localization
in photon number leads to exponentially small ionization while above quantum
delocalization border ionization goes in a diffusive way. For alkali atoms in a
static field the ionization border is much lower than in hydrogen due to
internal chaos.Comment: revtex, 4 pages, 5 figure
- …
