5,007 research outputs found
Source spectral index of heavy cosmic ray nuclei
From the energy spectra of the heavy nuclei observed by the French-Danish experiment on HEAO-3, the source spectra of the mostly primary nuclei (C, O, Ne, Mg, Si, Ca and Fe) in the framework of an energy dependent leaky box model (Engelmann, et al., 1985) were derived. The energy dependence of the escape length was derived from the observed B/C and sub-iron/iron ratios and the presently available cross sections for C and Fe on H nuclei (Koch-Miramond, et al., 1983). A good fit to the source energy spectra of all these nuclei was obtained by a power law in momentum with an exponent gamma = -2.4+0.05 for the energy range 1 to 25GeV/n (Engelmann, et al., 1985). Comparison with data obtained at higher energy suggested a progressive flattening of these spectra. More accurate spectral indices are sought by using better values of the escape length based on the latest cross section measurements (Webber 1984, Soutoul, et al., this conference). The aim is also to extend the analysis to lower energies down to 0.4GeV/n (kinetic energy observed near Earth), using data obtained by other groups. The only nuclei for which a good data base is possessed in a broad range of energies are O and Fe, so the present study is restricted to these two elements
New results on source and diffusion spectral features of Galactic cosmic rays: I- B/C ratio
In a previous study (Maurin et al., 2001), we explored the set of parameters
describing diffusive propagation of cosmic rays (galactic convection,
reacceleration, halo thickness, spectral index and normalization of the
diffusion coefficient), and we identified those giving a good fit to the
measured B/C ratio. This study is now extended to take into account a sixth
free parameter, namely the spectral index of sources. We use an updated version
of our code where the reacceleration term comes from standard minimal
reacceleration models. The goal of this paper is to present a general view of
the evolution of the goodness of fit to B/C data with the propagation
parameters. In particular, we find that, unlike the well accepted picture, and
in accordance with our previous study, a Kolmogorov-like power spectrum for
diffusion is strongly disfavored. Rather, the analysis points towards
along with source spectra index . Two
distinct energy dependences are used for the source spectra: the usual
power-law in rigidity and a law modified at low energy, the second choice being
only slightly preferred. We also show that the results are not much affected by
a different choice for the diffusion scheme. Finally, we compare our findings
to recent works, using other propagation models. This study will be further
refined in a companion paper, focusing on the fluxes of cosmic ray nuclei.Comment: 32 pages, 13 figures, accepted in A&
Charge and energy dependence of the residence time of cosmic ray nuclei below 15 GeV/nucleon
The relative abundance of nuclear species measured in cosmic rays at Earth has often been interpreted with the simple leaky box model. For this model to be consistent an essential requirement is that the escape length does not depend on the nuclear species. The discrepancy between escape length values derived from iron secondaries and from the B/C ratio was identified by Garcia-Munoz and his co-workers using a large amount of experimental data. Ormes and Protheroe found a similar trend in the HEAO data although they questioned its significance against uncertainties. They also showed that the change in the B/C ratio values implies a decrease of the residence time of cosmic rays at low energies in conflict with the diffusive convective picture. These conclusions crucially depend on the partial cross section values and their uncertainties. Recently new accurate cross sections of key importance for propagation calculations have been measured. Their statistical uncertainties are often better than 4% and their values significantly different from those previously accepted. Here, these new cross sections are used to compare the observed B/C+O and (Sc to Cr)/Fe ratio to those predicted with the simple leaky box model
Continuous monitoring of the boundary-layer top with lidar
International audienceContinuous lidar observations of the top height of the boundary layer (BL top) have been performed at Leipzig (51.3° N, 12.4° E), Germany, since August 2005. The results of measurements taken with a compact, automated Raman lidar over a one-year period (February 2006 to January 2007) are presented. Four different methods for the determination of the BL top are discussed. The most promising technique, the wavelet covariance algorithm, is improved by implementing some modifications so that an automated, robust retrieval of BL depths from lidar data is possible. Three case studies of simultaneous observations with the Raman lidar, a vertical-wind Doppler lidar, and accompanying radiosonde profiling of temperature and humidity are discussed to demonstrate the potential and the limits of the four lidar techniques at different aerosol and meteorological conditions. The lidar-derived BL top heights are compared with respective values derived from predictions of the regional weather forecast model COSMO of the German Meteorological Service. The comparison shows a general underestimation of the BL top by about 20% by the model. The statistical analysis of the one-year data set reveals that the seasonal mean of the daytime maximum BL top is 1400 m in spring, 1800 m in summer, 1200 m in autumn, and 800 m in winter at the continental, central European site. BL top typically increases by 100?300 m per hour in the morning of convective days
Cosmic-ray propagation properties for an origin in SNRs
We have studied the impact of cosmic-ray acceleration in SNR on the spectra
of cosmic-ray nuclei in the Galaxy using a series expansion of the propagation
equation, which allows us to use analytical solutions for part of the problem
and an efficient numerical treatment of the remaining equations and thus
accurately describes the cosmic-ray propagation on small scales around their
sources in three spatial dimensions and time. We found strong variations of the
cosmic-ray nuclei flux by typically 20% with occasional spikes of much higher
amplitude, but only minor changes in the spectral distribution. The locally
measured spectra of primary cosmic rays fit well into the obtained range of
possible spectra. We further showed that the spectra of the secondary element
Boron show almost no variations, so that the above findings also imply
significant fluctuations of the Boron-to-Carbon ratio. Therefore the commonly
used method of determining CR propagation parameters by fitting
secondary-to-primary ratios appears flawed on account of the variations that
these ratios would show throughout the Galaxy.Comment: Accepted for publication in Ap
Unusually high critical current of clean P-doped BaFe2As2 single crystalline thin film
Microstructura lly clean, isov alently P-doped BaFe2As2 (Ba-122) single
crystalline thin films have been prepared on MgO (001) substrates by molecular
beam epitaxy. These films show a superconducting transition temperature (Tc) of
over 30 K although P content is around 0.22, which is lower than the optimal
one for single crystals (i.e., 0.33). The enhanced Tc at this doping level is
attributed to the in-plane tensile strain. The strained film shows high
transport self-field critical current densities (Jc) of over 6 MA/cm2 at 4.2 K,
which are among the highest for Fe based superconductors (FeSCs). In-field Jc
exceeds 0.1 MA/cm2 at m0H = 35 T for H||ab and m0H = 18 T for H||c at 4.2 K,
respectively, in spite of moderate upper critical fields compared to other
FeSCs with similar Tc. Structural investigations reveal no defects or
misoriented grains pointing to strong pinning centers. We relate this
unexpected high Jc to a strong enhancement of the vortex core energy at optimal
Tc, driven by in-plane strain and doping. These unusually high Jc make P-doped
Ba-122 very favorable for high-field magnet applications.Comment: 5 pages, 4 figure
Usability Evaluation of Indicators of Energy-Related Problems in Commercial Airline Flight Decks
A series of pilot-in-the-loop flight simulation studies were conducted at NASA Langley Research Center to evaluate indicators aimed at supporting the flight crews awareness of problems related to energy states. Indicators were evaluated utilizing state-of-the-art flight deck systems such as on commercial air transport aircraft. This paper presents results for four technologies: (1) conventional primary flight display speed cues, (2) an enhanced airspeed control indicator, (3) a synthetic vision baseline that provides a flight path vector, speed error, and an acceleration cue, and (4) an aural airspeed alert that triggers when current airspeed deviates beyond a specified threshold from the selected airspeed. Full-mission high-fidelity flight simulation studies were conducted using commercial airline crews. Crews were paired by airline for common crew resource management procedures and protocols. Scenarios spanned a range of complex conditions while emulating several causal factors reported in recent accidents involving loss of energy state awareness by pilots. Data collection included questionnaires administered at the completion of flight scenarios, aircraft state data, audio/video recordings of flight crew, eye tracking, pilot control inputs, and researcher observations. Questionnaire response data included subjective measures of workload, situation awareness, complexity, usability, and acceptability. This paper reports relevant findings derived from subjective measures as well as quantitative measures
Light Element Evolution and Cosmic Ray Energetics
Using cosmic-ray energetics as a discriminator, we investigate evolutionary
models of LiBeB. We employ a Monte Carlo code which incorporates the delayed
mixing into the ISM both of the synthesized Fe, due to its incorporation into
high velocity dust grains, and of the cosmic-ray produced LiBeB, due to the
transport of the cosmic rays. We normalize the LiBeB production to the integral
energy imparted to cosmic rays per supernova. Models in which the cosmic rays
are accelerated mainly out of the average ISM significantly under predict the
measured Be abundance of the early Galaxy, the increase in [O/Fe] with
decreasing [Fe/H] notwithstanding. We suggest that this increase could be due
to the delayed mixing of the Fe. But, if the cosmic-ray metals are accelerated
out of supernova ejecta enriched superbubbles, the measured Be abundances are
consistent with a cosmic-ray acceleration efficiency that is in very good
agreement with the current epoch data. We also find that neither the above
cosmic-ray origin models nor a model employing low energy cosmic rays
originating from the supernovae of only very massive progenitors can account
for the Li data at values of [Fe/H] below 2.Comment: latex 19 pages, 2 tables, 10 eps figures, uses aastex.cls natbib.sty
Submitted to the Astrophysical Journa
Phenotypic and molecular characterization of Phaseolus vulgaris plants from non-cryopreserved and cryopreserved seeds
The objective of this work was to evaluate if cryostorage of Phaseolus vulgaris L. seeds induced variations in regenerated plants at the phenotypic and molecular levels. A series of agricultural traits was measured on plants grown from control, non-cryopreserved and cryopreserved seeds, and the genetic stability of plants of the second generation was analysed at selected microsatellite loci. The phenotype of the second generation plants was evaluated as well. No statistically significant phenotypic differences were observed for the parameters measured, neither in the first nor in the second generations. Averaging both treatments, about 76% of the seeds had germinated 10 days after sowing. At harvest we recorded plants with about 73 cm in height, 13 stem internodes, 25 fruits, 103 grains and 4 grains per fruit. One hundred seeds weighted about 26 g. The genetic analyses performed on the second generation plants using six nuclear Simple Sequences Repeats (SSR) markers revealed no changes in microsatellite length between control and cryopreserved samples, implying that there was no effect of seed liquid nitrogen exposure on genome integrity. The phenotypic and molecular results reported here confirm that cryostorage is an efficient and reliable technique to conserve P. vulgaris seeds and regenerate true-to-type plants
- …
