46,160 research outputs found

    Filamentary Diffusion of Cosmic Rays on Small Scales

    Full text link
    We investigate the diffusion of cosmic rays (CR) close to their sources. Propagating individual CRs in purely isotropic turbulent magnetic fields with maximal scale of spatial variations Lmax, we find that CRs diffuse anisotropically at distances r <~ Lmax from their sources. As a result, the CR densities around the sources are strongly irregular and show filamentary structures. We determine the transition time t* to standard diffusion as t* ~ 10^4 yr (Lmax/150 pc)^b (E/PeV)^(-g) (Brms/4 muG)^g, with b ~ 2 and g = 0.25-0.5 for a turbulent field with Kolmogorov power spectrum. We calculate the photon emission due to CR interactions with gas and the resulting irregular source images.Comment: 5 pages (2 columns), 4 figures. Published in Physical Review Letter

    The relation between magnetic and material arms in models for spiral galaxies

    Full text link
    Context. Observations of polarized radio emission show that large-scale (regular) magnetic fields in spiral galaxies are not axisymmetric, but generally stronger in interarm regions. In some nearby galaxies such as NGC 6946 they are organized in narrow magnetic arms situated between the material spiral arms. Aims. The phenomenon of magnetic arms and their relation to the optical spiral arms (the material arms) call for an explanation in the framework of galactic dynamo theory. Several possibilities have been suggested but are not completely satisfactory; here we attempt a consistent investigation. Methods. We use a 2D mean-field dynamo model in the no-z approximation and add injections of small-scale magnetic field, taken to result from supernova explosions, to represent the effects of dynamo action on smaller scales. This injection of small scale field is situated along the spiral arms, where star-formation mostly occurs. Results. A straightforward explanation of magnetic arms as a result of modulation of the dynamo mechanism by material arms struggles to produce pronounced magnetic arms, at least with realistic parameters, without introducing new effects such as a time lag between Coriolis force and {\alpha}-effect. In contrast, by taking into account explicitly the small-scale magnetic field that is injected into the arms by the action of the star forming regions that are concentrated there, we can obtain dynamo models with magnetic structures of various forms that can be compared with magnetic arms. (abbrev). Conclusions. We conclude that magnetic arms can be considered as coherent magnetic structures generated by large-scale dynamo action, and associated with spatially modulated small-scale magnetic fluctuations, caused by enhanced star formation rates within the material arms.Comment: 13 pages, 8 figures, accepted for publication to A&

    A search for extended radio emission from selected compact galaxy groups

    Get PDF
    Context. Studies on compact galaxy groups have led to the conclusion that a plenitude of phenomena take place in between galaxies that form them. However, radio data on these objects are extremely scarce and not much is known concerning the existence and role of the magnetic field in intergalactic space. Aims. We aim to study a small sample of galaxy groups that look promising as possible sources of intergalactic magnetic fields; for example data from radio surveys suggest that most of the radio emission is due to extended, diffuse structures in and out of the galaxies. Methods. We used the Effelsberg 100 m radio telescope at 4.85 GHz and NRAO VLA Sky Survey (NVSS) data at 1.40 GHz. After subtraction of compact sources we analysed the maps searching for diffuse, intergalactic radio emission. Spectral index and magnetic field properties were derived. Results. Intergalactic magnetic fields exist in groups HCG 15 and HCG 60, whereas there are no signs of them in HCG 68. There are also hints of an intergalactic bridge in HCG 44 at 4.85 GHz. Conclusions. Intergalactic magnetic fields exist in galaxy groups and their energy density may be comparable to the thermal (X-ray) density, suggesting an important role of the magnetic field in the intra-group medium, wherever it is detected.Comment: 13 pages, 4 figures, 3 tables, accepted for publication in A&

    High efficiency deterministic Josephson Vortex Ratchet

    Full text link
    We investigate experimentally a Josephson vortex ratchet -- a fluxon in an asymmetric periodic potential driven by a deterministic force with zero time average. The highly asymmetric periodic potential is created in an underdamped annular long Josephson junction by means of a current injector providing efficiency of the device up to 91%. We measured the ratchet effect for driving forces with different spectral content. For monochromatic high-frequency drive the rectified voltage becomes quantized. At high driving frequencies we also observe chaos, sub-harmonic dynamics and voltage reversal due to the inertial mass of a fluxon.Comment: accepted by PRL. To see status click on http://134.2.74.170:88/cnt/cond-mat_0506754.htm

    Large-scale radio continuum properties of 19 Virgo cluster galaxies The influence of tidal interactions, ram pressure stripping, and accreting gas envelopes

    Get PDF
    Deep scaled array VLA 20 and 6cm observations including polarization of 19 Virgo spirals are presented. This sample contains 6 galaxies with a global minimum of 20cm polarized emission at the receding side of the galactic disk and quadrupolar type large-scale magnetic fields. In the new sample no additional case of a ram-pressure stripped spiral galaxy with an asymmetric ridge of polarized radio continuum emission was found. In the absence of a close companion, a truncated HI disk, together with a ridge of polarized radio continuum emission at the outer edge of the HI disk, is a signpost of ram pressure stripping. 6 out of the 19 observed galaxies display asymmetric 6cm polarized emission distributions. Three galaxies belong to tidally interacting pairs, two galaxies host huge accreting HI envelopes, and one galaxy had a recent minor merger. Tidal interactions and accreting gas envelopes can lead to compression and shear motions which enhance the polarized radio continuum emission. In addition, galaxies with low average star formation rate per unit area have a low average degree of polarization. Shear or compression motions can enhance the degree of polarization. The average degree of polarization of tidally interacting galaxies is generally lower than expected for a given rotation velocity and star formation activity. This low average degree of polarization is at least partly due to the absence of polarized emission from the thin disk. Ram pressure stripping can decrease whereas tidal interactions most frequently decreases the average degree of polarization of Virgo spiral galaxies. We found that moderate active ram pressure stripping has no influence on the spectral index, but enhances the global radio continuum emission with respect to the FIR emission, while an accreting gas envelope can but not necessarily enhances the radio continuum emission with respect to the FIR emission.Comment: 37 pages, 26 figures, accepted for publication in A&

    Radio haloes in nearby galaxies modelled with 1D cosmic-ray transport using SPINNAKER

    Get PDF
    We present radio continuum maps of 12 nearby (D27 MpcD\leq 27~\rm Mpc), edge-on (i76i\geq 76^{\circ}), late-type spiral galaxies mostly at 1.41.4 and 5 GHz, observed with the Australia Telescope Compact Array, Very Large Array, Westerbork Synthesis Radio Telescope, Effelsberg 100-m and Parkes 64-m telescopes. All galaxies show clear evidence of radio haloes, including the first detection in the Magellanic-type galaxy NGC 55. In 11 galaxies, we find a thin and a thick disc that can be better fitted by exponential rather than Gaussian functions. We fit our SPINNAKER (SPectral INdex Numerical Analysis of K(c)osmic-ray Electron Radio-emission) 1D cosmic-ray transport models to the vertical model profiles of the non-thermal intensity and to the non-thermal radio spectral index in the halo. We simultaneously fit for the advection speed (or diffusion coefficient) and magnetic field scale height. In the thick disc, the magnetic field scale heights range from 2 to 8 kpc with an average across the sample of 3.0±1.7 kpc3.0\pm 1.7~\rm kpc; they show no correlation with either star-formation rate (SFR), SFR surface density (ΣSFR\Sigma_{\rm SFR}) or rotation speed (VrotV_{\rm rot}). The advection speeds range from 100 to 700 kms1700~\rm km\,s^{-1} and display correlations of VSFR0.36±0.06V\propto \rm SFR^{0.36\pm 0.06} and VΣSFR0.39±0.09V\propto \Sigma_{\rm SFR}^{0.39\pm 0.09}; they agree remarkably well with the escape velocities (0.5V/Vesc20.5\leq V/V_{\rm esc}\leq 2), which can be explained by cosmic-ray driven winds. Radio haloes show the presence of disc winds in galaxies with ΣSFR>103 Myr1kpc2\Sigma_{\rm SFR} > 10^{-3}~\rm M_{\odot}\,yr^{-1}\,kpc^{-2} that extend over several kpc and are driven by processes related to the distributed star formation in the disc.Comment: 39 pages, 20 colour figures, 10 tables. Accepted by MNRA

    Hybrid Atom--Photon Quantum Gate in a Superconducting Microwave Resonator

    Get PDF
    We propose a novel hybrid quantum gate between an atom and a microwave photon in a superconducting coplanar waveguide cavity by exploiting the strong resonant microwave coupling between adjacent Rydberg states. Using experimentally achievable parameters gate fidelities >0.99> 0.99 are possible on sub-μ\mus timescales for waveguide temperatures below 40 mK. This provides a mechanism for generating entanglement between two disparate quantum systems and represents an important step in the creation of a hybrid quantum interface applicable for both quantum simulation and quantum information processing.Comment: 4 pages, 4 figure

    Longitudinal response functions of 3H and 3He

    Full text link
    Trinucleon longitudinal response functions R_L(q,omega) are calculated for q values up to 500 MeV/c. These are the first calculations beyond the threshold region in which both three-nucleon (3N) and Coulomb forces are fully included. We employ two realistic NN potentials (configuration space BonnA, AV18) and two 3N potentials (UrbanaIX, Tucson-Melbourne). Complete final state interactions are taken into account via the Lorentz integral transform technique. We study relativistic corrections arising from first order corrections to the nuclear charge operator. In addition the reference frame dependence due to our non-relativistic framework is investigated. For q less equal 350 MeV/c we find a 3N force effect between 5 and 15 %, while the dependence on other theoretical ingredients is small. At q greater equal 400 MeV/c relativistic corrections to the charge operator and effects of frame dependence, especially for large omega, become more important. In comparison with experimental data there is generally a rather good agreement. Exceptions are the responses at excitation energies close to threshold, where there exists a large discrepancy with experiment at higher q. Concerning the effect of 3N forces there are a few cases, in particular for the R_L of 3He, where one finds a much improved agreement with experiment if 3N forces are included.Comment: 26 pages, 9 figure

    Quenching of the Deuteron in Flight

    Get PDF
    We investigate the Lorentz contraction of a deuteron in flight. Our starting point is the Blankenbecler-Sugar projection of the Bethe-Salpeter equation to a 3-dimensional quasi potential equation, wqhich we apply for the deuteron bound in an harmonic oscillator potential (for an analytical result) and by the Bonn NN potential for a more realistic estimate. We find substantial quenching with increasing external momenta and a significant modification of the high momentum spectrum of the deuteron.Comment: 11 pages, 4 figure
    corecore