956 research outputs found

    Current-driven orbital order-disorder transition in LaMnO3

    Full text link
    We report significant influence of electric current on the orbital order-disorder transition in LaMnO3. The transition temperature T_OO, thermal hysteresis in the resistivity (rho) versus temperature (T) plot around T_OO, and latent heat L associated with the transition decrease with the increase in current density. Eventually, at a critical current density, L reaches zero. The transition zone, on the other hand, broadens with the increase in current density. The states at ordered, disordered, and transition zone are all found to be stable within the time window from ~10^-3 to ~10^4 seconds.Comment: 7 pages including 5 figures; resolution of Fig.1 is better here than the published versio

    Charge-monopole versus Gravitational Scattering at Planckian Energies

    Full text link
    The amplitude for the scattering of a point magnetic monopole and a point charge, at centre-of-mass energies much larger than the masses of the particles, and in the limit of low momentum transfer, is shown to be proportional to the (integer-valued) monopole strength, assuming the Dirac quantization condition for the monopole-charge system. It is demonstrated that, for small momentum transfer, charge-monopole electromagnetic effects remain comparable to those due to the gravitational interaction between the particles even at Planckian centre-of-mass energies.Comment: 9 pages, revtex, IMSc/93-4

    Reflection coefficient for superresonant scattering

    Full text link
    We investigate superresonant scattering of acoustic disturbances from a rotating acoustic black hole in the low frequency range. We derive an expression for the reflection coefficient, exhibiting its frequency dependence in this regime.Comment: 7 page

    Universal canonical entropy for gravitating systems

    Full text link
    The thermodynamics of general relativistic systems with boundary, obeying a Hamiltonian constraint in the bulk, is argued to be determined solely by the boundary quantum dynamics, and hence by the area spectrum. Assuming, for large area of the boundary, (a) an area spectrum as determined by Non-perturbative Canonical Quantum General Relativity (NCQGR), (b) an energy spectrum that bears a power law relation to the area spectrum, (c) an area law for the leading order microcanonicai entropy, leading thermal fluctuation corrections to the canonical entropy are shown to be logarithmic in area with a universal coefficient. Since the microcanonical entropy also has univeral logarithmic corrections to the area law (from quantum spacetime fluctuations, as found earlier) the canonical entropy then has a universal form including logarithmic corrections to the area law. This form is shown to be independent of the index appearing in assumption (b). The index, however, is crucial in ascertaining the domain of validity of our approach based on thermal equilibrium.Comment: 6 pages revtex, one eps figure; based on talk delivered at the International Conference on Gravitation and Cosmology held at Kochi, India during 5-9 January, 200

    Parity Violating Gravitational Coupling Of Electromagnetic Fields

    Full text link
    A manifestly gauge invariant formulation of the coupling of the Maxwell theory with an Einstein Cartan geometry is given, where the space time torsion originates from a massless Kalb-Ramond field augmented by suitable U(1) Chern Simons terms.We focus on the situation where the torsion violates parity, and relate it to earlier proposals for gravitational parity violation.Comment: 7 Pages, Latex . no figures, Replaced with Revtex version, many references added and typos correcte

    Quantum Aspects of Black Hole Entropy

    Get PDF
    This survey intends to cover recent approaches to black hole entropy which attempt to go beyond the standard semiclassical perspective. Quantum corrections to the semiclassical Bekenstein-Hawking area law for black hole entropy, obtained within the quantum geometry framework, are treated in some detail. Their ramification for the holographic entropy bound for bounded stationary spacetimes is discussed. Four dimensional supersymmetric extremal black holes in string-based N=2 supergravity are also discussed, albeit more briefly.Comment: 13 Pages Revtex with 3 eps figures; based on plenary talk given at the International Conference on Gravitation and Cosmology, Kharagpur, India, January, 2000 One reference adde

    Eikonal Particle Scattering and Dilaton Gravity

    Get PDF
    Approximating light charged point-like particles in terms of (nonextremal) dilatonic black holes is shown to lead to certain pathologies in Planckian scattering in the eikonal approximation, which are traced to the presence of a (naked) curvature singularity in the metric of these black holes. The existence of such pathologies is confirmed by analyzing the problem in an `external metric' formulation where an ultrarelativistic point particle scatters off a dilatonic black hole geometry at large impact parameters. The maladies disappear almost trivially upon imposing the extremal limit. Attempts to derive an effective three dimensional `boundary' field theory in the eikonal limit are stymied by four dimensional (bulk) terms proportional to the light-cone derivatives of the dilaton field, leading to nontrivial mixing of electromagnetic and gravitational effects, in contrast to the case of general relativity. An eikonal scattering amplitude, showing decoupling of these effects, is shown to be derivable by resummation of graviton, dilaton and photon exchange ladder diagrams in a linearized version of the theory, for an asymptotic value of the dilaton field which makes the string coupling constant non-perturbative.Comment: 22 pages, Revte

    Electromagnetic and Gravitational Scattering at Planckian Energies

    Get PDF
    The scattering of pointlike particles at very large center of mass energies and fixed low momentum transfers, occurring due to both their electromagnetic and gravitational interactions is re-examined in the particular case when one of the particles carries magnetic charge. At Planckian center-of-mass energies, when gravitational dominance is normally expected, the presence of magnetic charge is shown to produce dramatic modifications to the scattering cross section as well as to the holomorphic structure of the scattering amplitude.Comment: 33 pages, Revtex file, no figs; a footnote and two references adde
    corecore