9,013 research outputs found

    Collision integrals and high temperature transport properties for N-N, O-O, and N-O

    Get PDF
    Accurate collision integrals are reported for the interactions of N(4 S 0) + N(4 S 0), O(3 P), and N(4 S 0) + O(3 P). These are computed from a semiclassical formulation of the scattering using the best available representations of all of the potential energy curves needed to describe the collisions. Experimental RKR curves and other accurate measured data are used where available; the results of accurate ab initio electronic structure calculations are used to determine the remaining potential curves. The high-lying states are found to give the largest contributions to the collision cross sections. The nine collision integrals, needed to determine transport properties to second order, are tabulated for translational temperatures in the range 250 K to 100,000 K. These results are intended to reduce the uncertainty in future predictions of the transport properties of nonequilibrium air, particularly at high temperatures. The viscosity, thermal conductivity, diffusion coefficient, and thermal diffusion factor for a gas composed of nitrogen and oxygen atoms in thermal equilibrium are calculated. It was found that the second order contribution to the transport properties is small. Graphs of these transport properties for various mixture ratios are presented for temperatures in the range 5000 to 15000 K

    Effect of a standardised dietary restriction protocol on multiple laboratory strains of Drosophila melanogaster

    Get PDF
    Background: Outcomes of lifespan studies in model organisms are particularly susceptible to variations in technical procedures. This is especially true of dietary restriction, which is implemented in many different ways among laboratories. Principal Findings: In this study, we have examined the effect of laboratory stock maintenance, genotype differences and microbial infection on the ability of dietary restriction (DR) to extend life in the fruit fly Drosophila melanogaster. None of these factors block the DR effect. Conclusions: These data lend support to the idea that nutrient restriction genuinely extends lifespan in flies, and that any mechanistic discoveries made with this model are of potential relevance to the determinants of lifespan in other organisms

    Fatigue delamination behaviour of unidirectional carbon fibre/epoxy laminates reinforced by Z-Fiber® pinnin

    Get PDF
    -Pin reinforced carbon-fibre epoxy laminates were tested under Mode I and Mode II conditions, both quasi-statically and in fatigue. Test procedures were adapted from existing standard or pre-standard tests. Samples containing 2% and 4% areal densities of carbon-fibre Z-pins (0.28mm diameter) were compared with unpinned laminates. Quasi-static tests under displacement control yielded a dramatic increase of the apparent delamination resistance. Specimens with 2% pin density failed in Mode I at loads 170N, equivalent to an apparent GIC of 2kJ/m2. Fatigue testing under load control showed that the presence of the through- thickness reinforcement slowed down fatigue delamination propagation

    Improved impact performance of marine sandwich panels using through-thickness reinforcement: Experimental results

    Get PDF
    This paper presents results from a test developed to simulate the water impact (slamming) loading of sandwich boat structures. A weighted elastomer ball is dropped from increasing heights onto rigidly supported panels until damage is detected. Results from this test indicate that honeycomb core sandwich panels, the most widely used material for racing yacht hulls, start to damage due to core crushing at impact energies around 550 J. Sandwich panels of the same areal weight and with the same carbon/epoxy facings but using a novel foam core reinforced in the thickness direction with pultruded carbon fibre pins, do not show signs of damage until above 1200 J impact energy. This suggests that these will offer significantly improved resistance to wave impact. Quasi-static test results cannot be used to predict impact resistance here as the crush strength of the pinned foam is more sensitive to loading rate than that of the honeycomb core

    A novel N-terminal extension in mitochondrial TRAP1 serves as a thermal regulator of chaperone activity.

    Get PDF
    Hsp90 is a conserved chaperone that facilitates protein homeostasis. Our crystal structure of the mitochondrial Hsp90, TRAP1, revealed an extension of the N-terminal β-strand previously shown to cross between protomers in the closed state. In this study, we address the regulatory function of this extension or 'strap' and demonstrate its responsibility for an unusual temperature dependence in ATPase rates. This dependence is a consequence of a thermally sensitive kinetic barrier between the apo 'open' and ATP-bound 'closed' conformations. The strap stabilizes the closed state through trans-protomer interactions. Displacement of cis-protomer contacts from the apo state is rate-limiting for closure and ATP hydrolysis. Strap release is coupled to rotation of the N-terminal domain and dynamics of the nucleotide binding pocket lid. The strap is conserved in higher eukaryotes but absent from yeast and prokaryotes suggesting its role as a thermal and kinetic regulator, adapting Hsp90s to the demands of unique cellular and organismal environments

    The Planck Surveyor mission: astrophysical prospects

    Get PDF
    Although the Planck Surveyor mission is optimized to map the cosmic microwave background anisotropies, it will also provide extremely valuable information on astrophysical phenomena. We review our present understanding of Galactic and extragalactic foregrounds relevant to the mission and discuss on one side, Planck's impact on the study of their properties and, on the other side, to what extent foreground contamination may affect Planck's ability to accurately determine cosmological parameters. Planck's multifrequency surveys will be unique in their coverage of large areas of the sky (actually, of the full sky); this will extend by two or more orders of magnitude the flux density interval over which mm/sub-mm counts of extragalactic sources can be determined by instruments already available (like SCUBA) or planned for the next decade (like the LSA-MMA or the space mission FIRST), which go much deeper but over very limited areas. Planck will thus provide essential complementary information on the epoch-dependent luminosity functions. Bright radio sources will be studied over a poorly explored frequency range where spectral signatures, essential to understand the physical processes that are going on, show up. The Sunyaev-Zeldovich effect, with its extremely rich information content, will be observed in the direction of a large number of rich clusters of Galaxies. Thanks again to its all sky coverage, Planck will provide unique information on the structure and on the emission properties of the interstellar medium in the Galaxy. At the same time, the foregrounds are unlikely to substantially limit Planck's ability to measure the cosmological signals. Even measurements of polarization of the primordial Cosmic Microwave background fluctuations appear to be feasible.Comment: 20 pages, Latex (use aipproc2.sty, aipproc2.cls, epsfig.sty), 10 PostScript figures; invited review talk, Proc. of the Conference: "3 K Cosmology", Roma, Italy, 5-10 October 1998, AIP Conference Proc, in press Note: Figures 6 and 7 have been replaced by new and correct version

    AAC: Effects On Participation and Learning

    Get PDF

    Bright soliton trains of trapped Bose-Einstein condensates

    Full text link
    We variationally determine the dynamics of bright soliton trains composed of harmonically trapped Bose-Einstein condensates with attractive interatomic interactions. In particular, we obtain the interaction potential between two solitons. We also discuss the formation of soliton trains due to the quantum mechanical phase fluctuations of a one-dimensional condensate.Comment: 4 pages, 2 figures, submitted to PR

    On the electron affinity of the oxygen atom

    Get PDF
    The electron affinity (EA) of oxygen is computed to be 1.287 eV, using 2p electron full configuration-interaction (CI) wave functions expanded in a 6s5p3d2f Slater-type orbital basis. The best complete active space self-consistent field - multireference CI (CASSCF-MRCI) result including only 2p correlation is 1.263 eV. However, inclusion of 2s intrashell and 2s2p intershell correlation increases the computed EA to 1.290 at the CASSCF-MRCI level. At the full CI basis set limit, the 2s contribution to the electron affinity is estimated to be as large as 0.1 eV. This study clearly establishes the synergistic effect between the higher excitations and basis set completeness on the electron affinity when the 2s electrons are correlated
    corecore