45,745 research outputs found
The Unitary Correlation Operator Method from a Similarity Renormalization Group Perspective
We investigate how the Unitary Correlation Operator Method (UCOM), developed
to explicitly describe the strong short-range central and tensor correlations
present in the nuclear many-body system, relates to the Similarity
Renormalization Group (SRG), a method to band-diagonalize Hamiltonians by
continuous unitary transformations. We demonstrate how the structure of the
UCOM transformation, originally motivated from the physically intuitive picture
of correlations in coordinate space, arises naturally from the SRG flow
equation. Apart from formal considerations we show that the momentum space
matrix elements of the effective interactions obtained in both schemes agree
extremely well.Comment: 5 pages, 2 figures, using REVTEX4; v2: references adde
Dynamic structure factor of ultracold Bose and Fermi gases in optical lattices
We investigate the dynamic structure factor of atomic Bose and Fermi gases in
one-dimensional optical lattices at zero temperature. The focus is on the
generic behaviour of S(k,omega) as function of filling and interaction strength
with the aim of identifying possible experimental signatures for the different
quantum phase transitions. We employ the Hubbard or Bose-Hubbard model and
solve the eigenvalue problem of the Hamiltonian exactly for moderate lattice
sizes. This allows us to determine the dynamic structure factor and other
observables directly in the phase transition regime, where approximation
schemes are generally not applicable. We discuss the characteristic signatures
of the various quantum phases appearing in the dynamic structure factor and
illustrate that the centroid of the strength distribution can be used to
estimate the relevant excitation gaps. Employing sum rules, these quantities
can be evaluated using ground state expectation values only. Important
differences between bosonic and fermionic systems are observed, e.g., regarding
the origin of the excitation gap in the Mott-insulator phase.Comment: 15 pages, 7 figure
Reply to Comment on ``Ab Initio Study of 40-Ca with an Importance Truncated No-Core Shell Model''
We respond to Comment on our recent letter (Phys.Rev.Lett.99:092501,2007) by
Dean et al (arXiv:0709.0449).Comment: 2 page
Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis bumpy torus plasma
Parametric variation of independent variables which may affect the characteristics of bumpy torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied included the type of gas, the polarity of the midplane electrode rings, the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date
A model for particle confinement in a toroidal plasma subject to strong radial electric fields
A toroidal plasma is confined and heated by the simultaneous application of strong d.c. magnetic fields and electric fields. Strong radial electric fields (about 1 kilovolt per centimeter) are imposed by biasing the plasma with up to 12 negative electrode rings which surround its minor circumference. The plasma containment is consistent with a balance of two processes: a radial infusion of ions in those sectors not containing electrode rings, resulting from the radially inward electric fields; and ion losses to the electrode rings, each of which acts as a sink and draws ions out the plasma in the manner of a Langmuir probe in the ion saturation regime. The highest density on axis which has been observed so far in this steady-state plasma is 6.2 x 10 to the 12th power particles per cubic centimeter, for which the particle containment time is 2.5 milliseconds. The deuterium ion kinetic temperature for these conditions was in the range of 360 to 520 eV
Response of Bose gases in time-dependent optical superlattices
The dynamic response of ultracold Bose gases in one-dimensional optical
lattices and superlattices is investigated based on exact numerical time
evolutions in the framework of the Bose-Hubbard model. The system is excited by
a temporal amplitude modulation of the lattice potential, as it was done in
recent experiments. For regular lattice potentials, the dynamic signatures of
the superfluid to Mott-insulator transition are studied and the position and
the fine-structure of the resonances is explained by a linear response
analysis. Using direct simulations and the perturbative analysis it is shown
that in the presence of a two-colour superlattice the excitation spectrum
changes significantly when going from the homogeneous Mott-insulator the quasi
Bose-glass phase. A characteristic and experimentally accessible signature for
the quasi Bose-glass is the appearance of low-lying resonances and a
suppression of the dominant resonance of the Mott-insulator phase.Comment: 20 pages, 9 figures; added references and corrected typo
Giant Resonances using Correlated Realistic Interactions: The Case for Second RPA
Lately we have been tackling the problem of describing nuclear collective
excitations starting from correlated realistic nucleon-nucleon (NN)
interactions. The latter are constructed within the Unitary Correlation
Operator Method (UCOM), starting from realistic NN potentials. It has been
concluded that first-order RPA with a two-body UCOM interaction is not capable,
in general, of reproducing quantitatively the properties of giant resonances
(GRs), due to missing higher-order configurations and long-range correlations
as well as neglected three-body terms in the Hamiltonian.
Here we report results on GRs obtained by employing a UCOM interaction based
on the Argonne V18 potential in Second RPA (SRPA) calculations. The same
interaction is used to describe the Hartree-Fock (HF) ground state and the
residual interactions. We find that the inclusion of second-order
configurations -- which effectively dress the underlying HF single-particle
states with self-energy insertions -- produces sizable corrections. The effect
appears essential for a realistic description of GRs when using the UCOM. We
argue that effects of higher than second order should be negligible. Therefore,
the UCOM-SRPA emerges as a promising tool for consistent calculations of
collective states in closed-shell nuclei. This is an interesting development,
given that SRPA can accommodate more physics than RPA (e.g., fragmentation).
Remaining discrepancies due to the missing three-body terms and
self-consistency issues of the present SRPA model are pointed out.Comment: 6 pages, incl. 1 figure; Proc. 26th Int. Workshop on Nuclear Theory,
June 2007, Rila mountains, Bulgari
Microwave radiation measurements near the electron plasma frequency of the NASA Lewis bumpy torus plasma
Microwave emission near the electron plasma frequency was observed, and its relation to the average electron density and the dc toroidal magnetic field was examined. The emission was detected using a spectrum analyzer and a 50 omega miniature coaxial probe. The radiation appeared as a broad amplitude peak that shifted in frequency as the plasma parameters were varied. The observed radiation scanned an average plasma density ranging from 10 million/cu cm to 8 hundred million/cu cm. A linear relation was observed betweeen the density calculated from the emission frequency and the average plasma density measured with a microwave interferometer. With the aid of a relative density profile measurement of the plasma, it was determined that the emissions occurred from the outer periphery of the plasma
Optimization of confinement in a toroidal plasma subject to strong radial electric fields
A preliminary report on the identification and optimization of independent variables which affect the ion density and confinement time in a bumpy torus plasma is presented. The independent variables include the polarity, position, and number of the midplane electrode rings, the method of gas injection, and the polarity and strength of a weak vertical magnetic field. Some characteristic data taken under condition when most of the independent variables were optimized are presented. The highest value of the electron number density on the plasma axis is 3.2 x 10 to the 12th power/cc, the highest ion heating efficiency is 47 percent, and the longest particle containment time is 2.0 milliseconds
- …
