475 research outputs found

    Ballistic Thermal Rectification in Asymmetric Three-Terminal Mesoscopic Dielectric Systems

    Full text link
    By coupling the asymmetric three-terminal mesoscopic dielectric system with a temperature probe, at low temperature, the ballistic heat flux flow through the other two asymmetric terminals in the nonlinear response regime is studied based on the Landauer formulation of transport theory. The thermal rectification is attained at the quantum regime. It is a purely quantum effect and is determined by the dependence of the ratio τRC(ω)/τRL(ω)\tau_{RC}(\omega)/\tau_{RL}(\omega) on ω\omega, the phonon's frequency. Where τRC(ω)\tau_{RC}(\omega) and τRL(ω)\tau_{RL}(\omega) are respectively the transmission coefficients from two asymmetric terminals to the temperature probe, which are determined by the inelastic scattering of ballistic phonons in the temperature probe. Our results are confirmed by extensive numerical simulations.Comment: 10 pages, 4 figure

    Sequential and co-tunneling behavior in the temperature-dependent thermopower of few-electron quantum dots

    Full text link
    We have studied the temperature dependent thermopower of gate-defined, lateral quantum dots in the Coulomb blockade regime using an electron heating technique. The line shape of the thermopower oscillations depends strongly on the contributing tunneling processes. Between 1.5 K and 40 mK a crossover from a pure sawtooth- to an intermitted sawtooth-like line shape is observed. The latter is attributed to the increasing dominance of cotunneling processes in the Coulomb blockade regime at low temperatures.Comment: 4 pages, 4 figures, submitted to Phys. Rev.

    Thermopower of Kondo Effect in Single Quantum Dot Systems with Orbital at Finite Temperatures

    Full text link
    We investigate the thermopower due to the orbital Kondo effect in a single quantum dot system by means of the noncrossing approximation. It is elucidated how the asymmetry of tunneling resonance due to the orbital Kondo effect affects the thermopower under gate-voltage and magnetic-field control.Comment: 4 pages, 4 figures, proceeding of Second International Symposium on Nanometer-Scale Quantum Physic

    Thermopower of a Kondo-correlated quantum dot

    Full text link
    The thermopower of a Kondo-correlated gate-defined quantum dot is studied using a current heating technique. In the presence of spin correlations the thermopower shows a clear deviation from the semiclassical Mott relation between thermopower and conductivity. The strong thermopower signal indicates a significant asymmetry in the spectral density of states of the Kondo resonance with respect to the Fermi energies of the reservoirs. The observed behavior can be explained within the framework of an Anderson-impurity model. Keywords: Thermoelectric and thermomagnetic effects, Coulomb blockade, single electron tunneling, Kondo-effect PACS Numbers: 72.20.Pa, 73.23.HkComment: 4 pages, 4 figures, revised version, changed figure

    Measuring Temperature Gradients over Nanometer Length Scales

    Full text link
    When a quantum dot is subjected to a thermal gradient, the temperature of electrons entering the dot can be determined from the dot's thermocurrent if the conductance spectrum and background temperature are known. We demonstrate this technique by measuring the temperature difference across a 15 nm quantum dot embedded in a nanowire. This technique can be used when the dot's energy states are separated by many kT and will enable future quantitative investigations of electron-phonon interaction, nonlinear thermoelectric effects, and the effciency of thermoelectric energy conversion in quantum dots.Comment: 6 pages, 5 figure

    Spin-dependent thermoelectric transport through double quantum dots

    Full text link
    We study thermoelectric transport through double quantum dots system with spin-dependent interdot coupling and ferromagnetic electrodes by means of the non-equilibrium Green function in the linear response regime. It is found that the thermoelectric coefficients are strongly dependent on the splitting of interdot coupling, the relative magnetic configurations and the spin polarization of leads. In particular, the thermoelectric efficiency can achieve considerable value in parallel configuration when the effective interdot coupling and tunnel coupling between QDs and the leads for spin-down electrons are small. Moreover, the thermoelectric efficiency increases with the intradot Coulomb interactions increasing and can reach very high value at an appropriate temperature. In the presence of the magnetic field, the spin accumulation in leads strongly suppresses the thermoelectric efficiency and a pure spin thermopower can be obtained.Comment: 5 figure

    Surface Transitions for Confined Associating Mixtures

    Full text link
    Thin films of binary mixtures that interact through isotropic forces and directionally specific "hydrogen bonding" are considered through Monte Carlo simulations. We show, in good agreement with experiment, that the single phase of these mixtures can be stabilized or destabilized on confinement. These results resolve a long standing controversy, since previous theories suggest that confinement only stabilizes the single phase of fluid mixtures.Comment: LaTeX document, documentstyle[aps,preprint]{revtex}, psfig.sty, bibtex, 13 pages, 4 figure

    Out-of-Equilibrium Admittance of Single Electron Box Under Strong Coulomb Blockade

    Full text link
    We study admittance and energy dissipation in an out-of-equlibrium single electron box. The system consists of a small metallic island coupled to a massive reservoir via single tunneling junction. The potential of electrons in the island is controlled by an additional gate electrode. The energy dissipation is caused by an AC gate voltage. The case of a strong Coulomb blockade is considered. We focus on the regime when electron coherence can be neglected but quantum fluctuations of charge are strong due to Coulomb interaction. We obtain the admittance under the specified conditions. It turns out that the energy dissipation rate can be expressed via charge relaxation resistance and renormalized gate capacitance even out of equilibrium. We suggest the admittance as a tool for a measurement of the bosonic distribution corresponding collective excitations in the system

    Enhanced sequential carrier capture into individual quantum dots and quantum posts controlled by surface acoustic waves

    Full text link
    Individual self-assembled Quantum Dots and Quantum Posts are studied under the influence of a surface acoustic wave. In optical experiments we observe an acoustically induced switching of the occupancy of the nanostructures along with an overall increase of the emission intensity. For Quantum Posts, switching occurs continuously from predominantely charged excitons (dissimilar number of electrons and holes) to neutral excitons (same number of electrons and holes) and is independent on whether the surface acoustic wave amplitude is increased or decreased. For quantum dots, switching is non-monotonic and shows a pronounced hysteresis on the amplitude sweep direction. Moreover, emission of positively charged and neutral excitons is observed at high surface acoustic wave amplitudes. These findings are explained by carrier trapping and localization in the thin and disordered two-dimensional wetting layer on top of which Quantum Dots nucleate. This limitation can be overcome for Quantum Posts where acoustically induced charge transport is highly efficient in a wide lateral Matrix-Quantum Well.Comment: 11 pages, 5 figure

    Surface and capillary transitions in an associating binary mixture model

    Get PDF
    We investigate the phase diagram of a two-component associating fluid mixture in the presence of selectively adsorbing substrates. The mixture is characterized by a bulk phase diagram which displays peculiar features such as closed loops of immiscibility. The presence of the substrates may interfere the physical mechanism involved in the appearance of these phase diagrams, leading to an enhanced tendency to phase separate below the lower critical solution point. Three different cases are considered: a planar solid surface in contact with a bulk fluid, while the other two represent two models of porous systems, namely a slit and an array on infinitely long parallel cylinders. We confirm that surface transitions, as well as capillary transitions for a large area/volume ratio, are stabilized in the one-phase region. Applicability of our results to experiments reported in the literature is discussed.Comment: 12 two-column pages, 12 figures, accepted for publication in Physical Review E; corrected versio
    corecore