276 research outputs found
Renormalization group approach to layered superconductors
A renormalization group theory for a system consisting of coupled
superconducting layers as a model for typical high-temperature superconducters
is developed. In a first step the electromagnetic interaction over infinitely
many layers is taken into account, but the Josephson coupling is neglected. In
this case the corrections to two-dimensional behavior due to the presence of
the other layers are very small. Next, renormalization group equations for a
layered system with very strong Josephson coupling are derived, taking into
account only the smallest possible Josephson vortex loops. The applicability of
these two limiting cases to typical high-temperature superconductors is
discussed. Finally, it is argued that the original renormalization group
approach by Kosterlitz is not applicable to a layered system with intermediate
Josephson coupling.Comment: RevTeX, 15 pages, 4 figures can be obtained from the author by
conventional mail; accepted for publication in Phys. Rev.
Quantum teleportation using active feed-forward between two Canary Islands
Quantum teleportation [1] is a quintessential prerequisite of many quantum
information processing protocols [2-4]. By using quantum teleportation, one can
circumvent the no-cloning theorem [5] and faithfully transfer unknown quantum
states to a party whose location is even unknown over arbitrary distances. Ever
since the first experimental demonstrations of quantum teleportation of
independent qubits [6] and of squeezed states [7], researchers have
progressively extended the communication distance in teleportation, usually
without active feed-forward of the classical Bell-state measurement result
which is an essential ingredient in future applications such as communication
between quantum computers. Here we report the first long-distance quantum
teleportation experiment with active feed-forward in real time. The experiment
employed two optical links, quantum and classical, over 143 km free space
between the two Canary Islands of La Palma and Tenerife. To achieve this, the
experiment had to employ novel techniques such as a frequency-uncorrelated
polarization-entangled photon pair source, ultra-low-noise single-photon
detectors, and entanglement-assisted clock synchronization. The average
teleported state fidelity was well beyond the classical limit of 2/3.
Furthermore, we confirmed the quality of the quantum teleportation procedure
(without feed-forward) by complete quantum process tomography. Our experiment
confirms the maturity and applicability of the involved technologies in
real-world scenarios, and is a milestone towards future satellite-based quantum
teleportation
XY models with disorder and symmetry-breaking fields in two dimensions
The combined effect of disorder and symmetry-breaking fields on the
two-dimensional XY model is examined. The study includes disorder in the
interaction among spins in the form of random phase shifts as well as disorder
in the local orientation of the field. The phase diagrams are determined and
the properties of the various phases and phase transitions are calculated. We
use a renormalization group approach in the Coulomb gas representation of the
model. Our results differ from those obtained for special cases in previous
works. In particular, we find a changed topology of the phase diagram that is
composed of phases with long-range order, quasi-long-range order, and
short-range order. The discrepancies can be ascribed to a breakdown of the
fugacity expansion in the Coulomb gas representation.
Implications for physical systems such as planar Josephson junctions and the
faceting of crystal surfaces are discussed.Comment: 17 pages Latex with 5 eps figures, change: acknowledgment extende
Hall noise and transverse freezing in driven vortex lattices
We study driven vortices lattices in superconducting thin films. Above the
critical force we find two dynamical phase transitions at and
, which could be observed in simultaneous noise measurements of the
longitudinal and the Hall voltage. At there is a transition from plastic
flow to smectic flow where the voltage noise is isotropic (Hall noise =
longitudinal noise) and there is a peak in the differential resistance. At
there is a sharp transition to a frozen transverse solid where the Hall
noise falls down abruptly and vortex motion is localized in the transverse
direction.Comment: 4 pages, 3 figure
Delocalization in Coupled Luttinger Liquids with Impurities
We study effects of quenched disorder on coupled two-dimensional arrays of
Luttinger liquids (LL) as a model for stripes in high-T_c compounds. In the
framework of a renormalization-group analysis, we find that weak inter-LL
charge-density-wave couplings are always irrelevant as opposed to the pure
system. By varying either disorder strength, intra- or inter-LL interactions,
the system can undergo a delocalization transition between an insulator and a
novel strongly anisotropic metallic state with LL-like transport. This state is
characterized by short-ranged charge-density-wave order, the superconducting
order is quasi long-ranged along the stripes and short-ranged in the
transversal direction.Comment: 6 pages, 5 figures, substantially extended and revised versio
Thermodynamic Phase Diagram of the Quantum Hall Skyrmion System
We numerically study the interacting quantum Hall skyrmion system based on
the Chern-Simons action. By noticing that the action is invariant under global
spin rotations in the spin space with respect to the magnetic field direction,
we obtain the low-energy effective action for a many skyrmion system.
Performing extensive molecular dynamics simulations, we establish the
thermodynamic phase diagram for a many skyrmion system.Comment: 4 pages, RevTex, 2 postscript figure
Phase Transitions in the Two-Dimensional XY Model with Random Phases: a Monte Carlo Study
We study the two-dimensional XY model with quenched random phases by Monte
Carlo simulation and finite-size scaling analysis. We determine the phase
diagram of the model and study its critical behavior as a function of disorder
and temperature. If the strength of the randomness is less than a critical
value, , the system has a Kosterlitz-Thouless (KT) phase transition
from the paramagnetic phase to a state with quasi-long-range order. Our data
suggest that the latter exists down to T=0 in contradiction with theories that
predict the appearance of a low-temperature reentrant phase. At the critical
disorder and for there is no
quasi-ordered phase. At zero temperature there is a phase transition between
two different glassy states at . The functional dependence of the
correlation length on suggests that this transition corresponds to the
disorder-driven unbinding of vortex pairs.Comment: LaTex file and 18 figure
Determining Pair Interactions from Structural Correlations
We examine metastable configurations of a two-dimensional system of
interacting particles on a quenched random potential landscape and ask how the
configurational pair correlation function is related to the particle
interactions and the statistical properties of the potential landscape.
Understanding this relation facilitates quantitative studies of magnetic flux
line interactions in type II superconductors, using structural information
available from Lorentz microscope images or Bitter decorations.
Previous work by some of us supported the conjecture that the relationship
between pair correlations and interactions in pinned flux line ensembles is
analogous to the corresponding relationship in the theory of simple liquids.
The present paper aims at a more thorough understanding of this relation. We
report the results of numerical simulations and present a theory for the low
density behavior of the pair correlation function which agrees well with our
simulations and captures features observed in experiments. In particular, we
find that the resulting description goes beyond the conjectured classical
liquid type relation and we remark on the differences.Comment: 7 pages, 6 figures. See also http://rainbow.uchicago.edu/~grier
In-field entanglement distribution over a 96 km-long submarine optical fibre
Techniques for the distribution of quantum-secured cryptographic keys have
reached a level of maturity allowing them to be implemented in all kinds of
environments, away from any form of laboratory infrastructure. Here, we detail
the distribution of entanglement between Malta and Sicily over a 96 km-long
submarine telecommunications optical fibre cable. We used this standard
telecommunications fibre as a quantum channel to distribute
polarisation-entangled photons and were able to observe around 257 photon pairs
per second, with a polarisation visibility above 90%. Our experiment
demonstrates the feasibility of using deployed submarine telecommunications
optical fibres as long-distance quantum channels for polarisation-entangled
photons. This opens up a plethora of possibilities for future experiments and
technological applications using existing infrastructure.Comment: 6 pages, 4 figure
Melting of two dimensional solids on disordered substrate
We study 2D solids with weak substrate disorder, using Coulomb gas
renormalisation. The melting transition is found to be replaced by a sharp
crossover between a high liquid with thermally induced dislocations, and a
low glassy regime with disorder induced dislocations at scales larger than
which we compute (, the Larkin and
translational correlation lengths). We discuss experimental consequences,
reminiscent of melting, such as size effects in vortex flow and AC response in
superconducting films.Comment: 4 pages, uses RevTeX, Amssymb, multicol,eps
- …
