475 research outputs found
Probing the equation of state in the AGS energy range with 3-d hydrodynamics
The effect of (i) the phase transition between a quark gluon plasma (QGP) and
a hadron gas and (ii) the number of resonance degrees of freedom in the
hadronic phase on the single inclusive distributions of 16 different types of
produced hadrons for Au+Au collisions at AGS energies is studied.
We have used an exact numerical solution of the relativistic hydrodynamical
equations without free parameters which, because of its 3-d character,
constitutes a considerable improvement over the classical Landau solution.
Using two different equations of state (eos) - one containing a phase
transition from QGP to the Hadronic Phase and two versions of a purely hadronic
eos - we find that the first one gives an overall better description of the
Au+Au experimental data at energies.
We reproduce and analyse measured meson and proton spectra and also make
predictions for anti-protons, deltas, anti-deltas and hyperons. The low m_t
enhancement in pi- spectra is explained by baryon number conservation and
strangeness equilibration.
We also find that negative kaon data are more sensitive to the eos, as well
as the K-/pi- ratio. All hyperons and deltas are sensitive to the presence of a
phase transition in the forward rapidity region. Anti-protons, Omegas and heavy
anti-baryons are sensitive in the whole rapidity range.Comment: 25 pages (.tex) and 9 figures (.ps
Hadrons in Dense Resonance-Matter: A Chiral SU(3) Approach
A nonlinear chiral SU(3) approach including the spin 3/2 decuplet is
developed to describe dense matter. The coupling constants of the baryon
resonances to the scalar mesons are determined from the decuplet vacuum masses
and SU(3) symmetry relations. Different methods of mass generation show
significant differences in the properties of the spin-3/2 particles and in the
nuclear equation of state.Comment: 28 pages, 9 figure
Hydrodynamical analysis of symmetric nucleus-nucleus collisions at CERN/SPS energies
We present a coherent theoretical study of ultrarelativistic heavy-ion data
obtained at the CERN/SPS by the NA35/NA49 Collaborations using 3+1-dimensional
relativistic hydrodynamics. We find excellent agreement with the rapidity
spectra of negative hadrons and protons and with the correlation measurements
in two experiments: at 200 and at 160 (preliminary
results). Within our model this implies that for () a
quark-gluon-plasma of initial volume 174 (24 ) with a lifetime 3.4
(1.5 ) was formed. It is found that the Bose-Einstein correlation
measurements do not determine the maximal effective radii of the hadron sources
because of the large contributions from resonance decay at small momenta. Also
within this study we present an NA49 acceptance corrected two-pion
Bose-Einstein correlation function in the invariant variable, .Comment: 21 pages, 11 Postscript figures (1 File, 775654 Bytes, has to be
requested for submission via e.mail from [email protected]
Implications for prediction and hazard assessment from the 2004 Parkfield earthquake
Obtaining high-quality measurements close to a large earthquake is not easy: one has to be in the right place at the right time with the right instruments. Such a convergence happened, for the first time, when the 28 September 2004 Parkfield, California, earthquake occurred on the San Andreas fault in the middle of a dense network of instruments designed to record it. The resulting data reveal aspects of the earthquake process never before seen. Here we show what these data, when combined with data from earlier Parkfield earthquakes, tell us about earthquake physics and earthquake prediction. The 2004 Parkfield earthquake, with its lack of obvious precursors, demonstrates that reliable short-term earthquake prediction still is not achievable. To reduce the societal impact of earthquakes now, we should focus on developing the next generation of models that can provide better predictions of the strength and location of damaging ground shaking
Recommended from our members
Frequency-magnitude distribution of microearthquakes beneath the 9°50′N region of the East Pacific Rise, October 2003 through April 2004
Relocated hypocentral data from a 7-month deployment (October 2003 to April 2004) of ocean bottom seismometers provide an opportunity to map microearthquake frequency-magnitude distributions (FMDs) along the 9°49–52′N region on the East Pacific Rise. These analyses, which incorporate more than 9000 earthquakes, represent the first investigation of the 3-D spatial and temporal patterns of FMDs along any mid-ocean ridge spreading center. The data are described well by a Gutenberg-Richter model, indicating a power law or fractal relationship between earthquake size and frequency. The scaling exponent, or b value, shows significant spatial variability, exceeding a value of 2.0 at the shallowest depths on axis and dropping below 1.0 away from the axial trough. This spatial pattern is consistent with an inverse relationship between b value and ambient stress conditions, with the lowest stress levels at shallow depths and relatively high stress levels (or low pore pressures) observed away from the axial zone. Intermediate b values are observed on-axis above the ridge system's melt lens; however, within this region there also exists significant spatial variability. This indicates that stress conditions and/or structural heterogeneity may vary at subkilometer scales within the hydrothermal circulation cell. Although the observational period is characterized by increasing seismicity rates, building toward an eruptive episode in January 2006, the first-order spatial pattern of b values is sustained, with no overall temporal trend. As a byproduct of this b value analysis, the detection capabilities of the array are assessed empirically
Structure of the Vacuum in Nuclear Matter - A Nonperturbative Approach
We compute the vacuum polarisation correction to the binding energy of
nuclear matter in the Walecka model using a nonperturbative approach. We first
study such a contribution as arising from a ground state structure with
baryon-antibaryon condensates. This yields the same results as obtained through
the relativistic Hartree approximation of summing tadpole diagrams for the
baryon propagator. Such a vacuum is then generalized to include quantum effects
from meson fields through scalar-meson condensates. The method is applied to
study properties of nuclear matter and leads to a softer equation of state
giving a lower value of the incompressibility than would be reached without
quantum effects. The density dependent effective sigma mass is also calculated
including such vacuum polarisation effects.Comment: 26 pages including 5 eps files, uses revtex style; PACS number:
21.65.+f,21.30.+
Derivative-Coupling Models and the Nuclear-Matter Equation of State
The equation of state of saturated nuclear matter is derived using two
different derivative-coupling Lagrangians. We show that both descriptions are
equivalent and can be obtained from the sigma-omega model through an
appropriate rescaling of the coupling constants. We introduce generalized forms
of this rescaling to study the correlations amongst observables in infinite
nuclear matter, in particular, the compressibility and the effective nucleon
mass.Comment: 16 pages, 6 figures, 36 kbytes. To appear in Zeit. f. Phys. A
(Hadrons and Nuclei
Phase Transitions in Warm, Asymmetric Nuclear Matter
A relativistic mean-field model of nuclear matter with arbitrary proton
fraction is studied at finite temperature. An analysis is performed of the
liquid-gas phase transition in a system with two conserved charges (baryon
number and isospin) using the stability conditions on the free energy, the
conservation laws, and Gibbs' criteria for phase equilibrium. For a binary
system with two phases, the coexistence surface (binodal) is two-dimensional.
The Maxwell construction through the phase-separation region is discussed, and
it is shown that the stable configuration can be determined uniquely at every
density. Moreover, because of the greater dimensionality of the binodal
surface, the liquid-gas phase transition is continuous (second order by
Ehrenfest's definition), rather than discontinuous (first order), as in
familiar one-component systems. Using a mean-field equation of state calibrated
to the properties of nuclear matter and finite nuclei, various phase-separation
scenarios are considered. The model is then applied to the liquid-gas phase
transition that may occur in the warm, dilute matter produced in energetic
heavy-ion collisions. In asymmetric matter, instabilities that produce a
liquid-gas phase separation arise from fluctuations in the proton concentration
(chemical instability), rather than from fluctuations in the baryon density
(mechanical instability).Comment: Postscript file, 50 pages including 23 figure
Hydrodynamical assessment of 200 AGeV collisions
We are analyzing the hydrodynamics of 200 A GeV S+S collisions using a new
approach which tries to quantify the uncertainties arising from the specific
implementation of the hydrodynamical model. Based on a previous
phenomenological analysis we use the global hydrodynamics model to show that
the amount of initial flow, or initial energy density, cannot be determined
from the hadronic momentum spectra. We additionally find that almost always a
sizeable transverse flow deve- lops, which causes the system to freeze out,
thereby limiting the flow velocity in itself. This freeze-out dominance in turn
makes a distinction between a plasma and a hadron resonance gas equation of
state very difficult, whereas a pure pion gas can easily be ruled out from
present data. To complete the picture we also analyze particle multiplicity
data, which suggest that chemical equilibrium is not reached with respect to
the strange particles. However, the over- population of pions seems to be at
most moderate, with a pion chemical potential far away from the Bose
divergence.Comment: 19 pages, 11 figs in separate uuencoded file, for LateX, epsf.tex,
dvips, TPR-94-5 and BNL-(no number yet
- …
