125 research outputs found
Menelaus relation and Fay's trisecant formula are associativity equations
It is shown that the celebrated Menelaus relation and Fay's trisecant formula
similar to the WDVV equation are associativity conditions for structure
constants of certain three-dimensional algebra.Comment: Talk given at the Conference " Mathematics and Physics of Solitons
and Integrable Systems", Dijon, 28.6-2.7, 2009. Minor misprints correcte
Lines on projective varieties and applications
The first part of this note contains a review of basic properties of the
variety of lines contained in an embedded projective variety and passing
through a general point. In particular we provide a detailed proof that for
varieties defined by quadratic equations the base locus of the projective
second fundamental form at a general point coincides, as a scheme, with the
variety of lines. The second part concerns the problem of extending embedded
projective manifolds, using the geometry of the variety of lines. Some
applications to the case of homogeneous manifolds are included.Comment: 15 pages. One example removed; one remark and some references added;
typos correcte
Anti-Pluricanonical Systems On Q-Fano Threefolds
We investigate birationality of the anti-pluricanonical map , the
rational map defined by the anti-pluricanonical system , on
-Fano threefolds.Comment: 18 page
On special quadratic birational transformations of a projective space into a hypersurface
We study transformations as in the title with emphasis on those having smooth
connected base locus, called "special". In particular, we classify all special
quadratic birational maps into a quadric hypersurface whose inverse is given by
quadratic forms by showing that there are only four examples having general
hyperplane sections of Severi varieties as base loci.Comment: Accepted for publication in Rendiconti del Circolo Matematico di
Palerm
Deformation of canonical morphisms and the moduli of surfaces of general type
In this article we study the deformation of finite maps and show how to use
this deformation theory to construct varieties with given invariants in a
projective space. Among other things, we prove a criterion that determines when
a finite map can be deformed to a one--to--one map. We use this criterion to
construct new simple canonical surfaces with different and . Our
general results enable us to describe some new components of the moduli of
surfaces of general type. We also find infinitely many moduli spaces having one component whose general point corresponds to a
canonically embedded surface and another component whose general point
corresponds to a surface whose canonical map is a degree 2 morphism.Comment: 32 pages. Final version with some simplifications and clarifications
in the exposition. To appear in Invent. Math. (the final publication is
available at springerlink.com
Complete intersections: Moduli, Torelli, and good reduction
We study the arithmetic of complete intersections in projective space over
number fields. Our main results include arithmetic Torelli theorems and
versions of the Shafarevich conjecture, as proved for curves and abelian
varieties by Faltings. For example, we prove an analogue of the Shafarevich
conjecture for cubic and quartic threefolds and intersections of two quadrics.Comment: 37 pages. Typo's fixed. Expanded Section 2.
Fibrations on four-folds with trivial canonical bundles
Four-folds with trivial canonical bundles are divided into six classes
according to their holonomy group. We consider examples that are fibred by
abelian surfaces over the projective plane. We construct such fibrations in
five of the six classes, and prove that there is no such fibration in the sixth
class. We classify all such fibrations whose generic fibre is the Jacobian of a
genus two curve.Comment: 28 page
Borcherds symmetries in M-theory
It is well known but rather mysterious that root spaces of the Lie
groups appear in the second integral cohomology of regular, complex, compact,
del Pezzo surfaces. The corresponding groups act on the scalar fields (0-forms)
of toroidal compactifications of M theory. Their Borel subgroups are actually
subgroups of supergroups of finite dimension over the Grassmann algebra of
differential forms on spacetime that have been shown to preserve the
self-duality equation obeyed by all bosonic form-fields of the theory. We show
here that the corresponding duality superalgebras are nothing but Borcherds
superalgebras truncated by the above choice of Grassmann coefficients. The full
Borcherds' root lattices are the second integral cohomology of the del Pezzo
surfaces. Our choice of simple roots uses the anti-canonical form and its known
orthogonal complement. Another result is the determination of del Pezzo
surfaces associated to other string and field theory models. Dimensional
reduction on corresponds to blow-up of points in general position
with respect to each other. All theories of the Magic triangle that reduce to
the sigma model in three dimensions correspond to singular del Pezzo
surfaces with (normal) singularity at a point. The case of type I and
heterotic theories if one drops their gauge sector corresponds to non-normal
(singular along a curve) del Pezzo's. We comment on previous encounters with
Borcherds algebras at the end of the paper.Comment: 30 pages. Besides expository improvements, we exclude by hand real
fermionic simple roots when they would naively aris
The class of the locus of intermediate Jacobians of cubic threefolds
We study the locus of intermediate Jacobians of cubic threefolds within the
moduli space of complex principally polarized abelian fivefolds, and its
generalization to arbitrary genus - the locus of abelian varieties with a
singular odd two-torsion point on the theta divisor. Assuming that this locus
has expected codimension (which we show to be true for genus up to 5), we
compute the class of this locus, and of is closure in the perfect cone toroidal
compactification, in the Chow, homology, and the tautological ring.
We work out the cases of genus up to 5 in detail, obtaining explicit
expressions for the classes of the closures of the locus of products of an
elliptic curve and a hyperelliptic genus 3 curve, in moduli of principally
polarized abelian fourfolds, and of the locus of intermediate Jacobians in
genus 5. In the course of our computation we also deal with various
intersections of boundary divisors of a level toroidal compactification, which
is of independent interest in understanding the cohomology and Chow rings of
the moduli spaces.Comment: v2: new section 9 on the geometry of the boundary of the locus of
intermediate Jacobians of cubic threefolds. Final version to appear in
Invent. Mat
On the canonical map of surfaces with q>=6
We carry out an analysis of the canonical system of a minimal complex surface
of general type with irregularity q>0. Using this analysis we are able to
sharpen in the case q>0 the well known Castelnuovo inequality K^2>=3p_g+q-7.
Then we turn to the study of surfaces with p_g=2q-3 and no fibration onto a
curve of genus >1. We prove that for q>=6 the canonical map is birational.
Combining this result with the analysis of the canonical system, we also prove
the inequality: K^2>=7\chi+2. This improves an earlier result of the first and
second author [M.Mendes Lopes and R.Pardini, On surfaces with p_g=2q-3, Adv. in
Geom. 10 (3) (2010), 549-555].Comment: Dedicated to Fabrizio Catanese on the occasion of his 60th birthday.
To appear in the special issue of Science of China Ser.A: Mathematics
dedicated to him. V2:some typos have been correcte
- …
