1,298 research outputs found
Mode-coupling and nonlinear Landau damping effects in auroral Farley-Buneman turbulence
The fundamental problem of Farley-Buneman turbulence in the auroral
-region has been discussed and debated extensively in the past two decades.
In the present paper we intend to clarify the different steps that the auroral
-region plasma has to undergo before reaching a steady state. The
mode-coupling calculation, for Farley-Buneman turbulence, is developed in order
to place it in perspective and to estimate its magnitude relative to the
anomalous effects which arise through the nonlinear wave-particle interaction.
This nonlinear effect, known as nonlinear ``Landau damping'' is due to the
coupling of waves which produces other waves which in turn lose energy to the
bulk of the particles by Landau damping. This leads to a decay of the wave
energy and consequently a heating of the plasma. An equation governing the
evolution of the field spectrum is derived and a physical interpration for each
of its terms is provided
YREC: The Yale Rotating Stellar Evolution Code
The stellar evolution code YREC is outlined with emphasis on its applications
to helio- and asteroseismology. The procedure for calculating calibrated solar
and stellar models is described. Other features of the code such as a non-local
treatment of convective core overshoot, and the implementation of a
parametrized description of turbulence in stellar models, are considered in
some detail. The code has been extensively used for other astrophysical
applications, some of which are briefly mentioned at the end of the paper.Comment: 10 pages, 2 figures, ApSS accepte
Cosmological Black Holes on Branes
We examined analytically a cosmological black hole domain wall system. Using
the C-metric construction we derived the metric for the spacetime describing an
infinitely thin domain wall intersecting a cosmological black hole. We studied
the behaviour of the scalar field describing a self-interacting cosmological
domain wall and find the approximated solution valid for large distances. The
thin wall approximation and the back raection problem were elaborated finding
that the topological kink solution smoothed out singular behaviour of the zero
thickness wall using a core topological and hence thick domain wall. We also
analyze the nucleation of cosmological black holes on and in the presence of a
domain walls and conclude that the domain wall will nucleate small black holes
on it rather than large ones inside.Comment: 13 pages, Revtex, to be published in Phys.Rev. D1
Nuttier Bubbles
We construct new explicit solutions of general relativity from double
analytic continuations of Taub-NUT spacetimes. This generalizes previous
studies of 4-dimensional nutty bubbles. One 5-dimensional locally
asymptotically AdS solution in particular has a special conformal boundary
structure of . We compute its boundary stress tensor and
relate it to the properties of the dual field theory. Interestingly enough, we
also find consistent 6-dimensional bubble solutions that have only one timelike
direction. The existence of such spacetimes with non-trivial topology is
closely related to the existence of the Taub-NUT(-AdS) solutions with more than
one NUT charge. Finally, we begin an investigation of generating new solutions
from Taub-NUT spacetimes and nuttier bubbles. Using the so-called Hopf duality,
we provide new explicit time-dependent backgrounds in six dimensions.Comment: 32 pages, 1 figure; v.3. typos corrected. Matches the published
versio
Onset of Superfluidity in 4He Films Adsorbed on Disordered Substrates
We have studied 4He films adsorbed in two porous glasses, aerogel and Vycor,
using high precision torsional oscillator and DC calorimetry techniques. Our
investigation focused on the onset of superfluidity at low temperatures as the
4He coverage is increased. Torsional oscillator measurements of the 4He-aerogel
system were used to determine the superfluid density of films with transition
temperatures as low as 20 mK. Heat capacity measurements of the 4He-Vycor
system probed the excitation spectrum of both non-superfluid and superfluid
films for temperatures down to 10 mK. Both sets of measurements suggest that
the critical coverage for the onset of superfluidity corresponds to a mobility
edge in the chemical potential, so that the onset transition is the bosonic
analog of a superconductor-insulator transition. The superfluid density
measurements, however, are not in agreement with the scaling theory of an onset
transition from a gapless, Bose glass phase to a superfluid. The heat capacity
measurements show that the non-superfluid phase is better characterized as an
insulator with a gap.Comment: 15 pages (RevTex), 21 figures (postscript
Nariai, Bertotti-Robinson and anti-Nariai solutions in higher dimensions
We find all the higher dimensional solutions of the Einstein-Maxwell theory
that are the topological product of two manifolds of constant curvature. These
solutions include the higher dimensional Nariai, Bertotti-Robinson and
anti-Nariai solutions, and the anti-de Sitter Bertotti-Robinson solutions with
toroidal and hyperbolic topology (Plebanski-Hacyan solutions). We give explicit
results for any dimension D>3. These solutions are generated from the
appropriate extremal limits of the higher dimensional near-extreme black holes
in a de Sitter, and anti-de Sitter backgrounds. Thus, we also find the mass and
the charge parameters of the higher dimensional extreme black holes as a
function of the radius of the degenerate horizon.Comment: 10 pages, 11 figures, RevTeX4. References added. Published versio
Quantum spin systems at positive temperature
We develop a novel approach to phase transitions in quantum spin models based
on a relation to their classical counterparts. Explicitly, we show that
whenever chessboard estimates can be used to prove a phase transition in the
classical model, the corresponding quantum model will have a similar phase
transition, provided the inverse temperature and the magnitude of the
quantum spins \CalS satisfy \beta\ll\sqrt\CalS. From the quantum system we
require that it is reflection positive and that it has a meaningful classical
limit; the core technical estimate may be described as an extension of the
Berezin-Lieb inequalities down to the level of matrix elements. The general
theory is applied to prove phase transitions in various quantum spin systems
with \CalS\gg1. The most notable examples are the quantum orbital-compass
model on and the quantum 120-degree model on which are shown to
exhibit symmetry breaking at low-temperatures despite the infinite degeneracy
of their (classical) ground state.Comment: 47 pages, version to appear in CMP (style files included
A distance for partially labeled trees
In a number of practical situations, data have structure and the relations among its component parts need to be coded with suitable data models. Trees are usually utilized for representing data for which hierarchical relations can be defined. This is the case in a number of fields like image analysis, natural language processing, protein structure, or music retrieval, to name a few. In those cases, procedures for comparing trees are very relevant. An approximate tree edit distance algorithm has been introduced for working with trees labeled only at the leaves. In this paper, it has been applied to handwritten character recognition, providing accuracies comparable to those by the most comprehensive search method, being as efficient as the fastest.This work is supported by the Spanish Ministry projects DRIMS (TIN2009-14247-C02), and Consolider Ingenio 2010 (MIPRCV, CSD2007-00018), partially supported by EU ERDF and the Pascal Network of Excellence
The extremal limits of the C-metric: Nariai, Bertotti-Robinson and anti-Nariai C-metrics
In two previous papers we have analyzed the C-metric in a background with a
cosmological constant, namely the de Sitter (dS) C-metric, and the anti-de
Sitter (AdS) C-metric, following the work of Kinnersley and Walker for the flat
C-metric. These exact solutions describe a pair of accelerated black holes in
the flat or cosmological constant background, with the acceleration A being
provided by a strut in-between that pushes away the two black holes. In this
paper we analyze the extremal limits of the C-metric in a background with
generic cosmological constant. We follow a procedure first introduced by
Ginsparg and Perry in which the Nariai solution, a spacetime which is the
direct topological product of the 2-dimensional dS and a 2-sphere, is generated
from the four-dimensional dS-Schwarzschild solution by taking an appropriate
limit, where the black hole event horizon approaches the cosmological horizon.
Similarly, one can generate the Bertotti-Robinson metric from the
Reissner-Nordstrom metric by taking the limit of the Cauchy horizon going into
the event horizon of the black hole, as well as the anti-Nariai by taking an
appropriate solution and limit. Using these methods we generate the C-metric
counterparts of the Nariai, Bertotti-Robinson and anti-Nariai solutions, among
others. One expects that the solutions found in this paper are unstable and
decay into a slightly non-extreme black hole pair accelerated by a strut or by
strings. Moreover, the Euclidean version of these solutions mediate the quantum
process of black hole pair creation, that accompanies the decay of the dS and
AdS spaces
Long-Term Efficacy and Safety of Adalimumab in Pediatric Patients with Crohn's Disease
Background: IMAgINE 1 assessed 52-week efficacy and safety of adalimumab in children with moderate to severe Crohn's disease. Long-Term efficacy and safety of adalimumab for patients who entered the IMAgINE 2 extension are reported. Methods: Patients who completed IMAgINE 1 could enroll in IMAgINE 2. Endpoints assessed from weeks 0 to 240 of IMAgINE 2 were Pediatric Crohn's Disease Activity Index remission (Pediatric Crohn's Disease Activity Index ≤ 10) and response (Pediatric Crohn's Disease Activity Index decrease ≥15 from IMAgINE 1 baseline) using observed analysis and hybrid nonresponder imputation (hNRI). For hNRI, discontinued patients were imputed as failures unless they transitioned to commercial adalimumab (with study site closure) or adult care, where last observation was carried forward. Corticosteroid-free remission in patients receiving corticosteroids at IMAgINE 1 baseline, discontinuation of immunomodulators (IMMs) in patients receiving IMMs at IMAgINE 2 baseline, and linear growth improvement were reported as observed. Adverse events were assessed for patients receiving ≥1 adalimumab dose in IMAgINE 1 and 2 through January 2015. Results: Of 100 patients enrolled in IMAgINE 2, 41% and 48% achieved remission and response (hNRI) at IMAgINE 2 week 240. Remission rates were maintained by 45% (30/67, hNRI) of patients who entered IMAgINE 2 in remission. At IMAgINE 2 week 240, 63% (12/19) of patients receiving corticosteroids at IMAgINE 1 baseline achieved corticosteroid-free remission and 30% (6/20) of patients receiving IMMs at IMAgINE 2 baseline discontinued IMMs. Adalimumab treatment led to growth velocity normalization. No new safety signals were identified. Conclusions: Efficacy and safety profiles of prolonged adalimumab treatment in children with Crohn's disease were consistent with IMAgINE 1 and adult Crohn's disease adalimumab trials
- …
