35 research outputs found

    Spin Glass Ordering in Diluted Magnetic Semiconductors: a Monte Carlo Study

    Get PDF
    We study the temperature-dilution phase diagram of a site-diluted Heisenberg antiferromagnet on a fcc lattice, with and without the Dzyaloshinskii-Moriya anisotropic term, fixed to realistic microscopic parameters for IIB1xMnxTeIIB_{1-x} Mn_x Te (IIB=Cd, Hg, Zn). We show that the dipolar Dzyaloshinskii-Moriya anisotropy induces a finite-temperature phase transition to a spin glass phase, at dilutions larger than 80%. The resulting probability distribution of the order parameter P(q) is similar to the one found in the cubic lattice Edwards-Anderson Ising model. The critical exponents undergo large finite size corrections, but tend to values similar to the ones of the Edwards-Anderson-Ising model.Comment: 4 pages plus 3 postscript figure

    Primordial nucleosynthesis with a varying fine structure constant: An improved estimate

    Full text link
    We compute primordial light-element abundances for cases with fine structure constant alpha different from the present value, including many sources of alpha dependence neglected in previous calculations. Specifically, we consider contributions arising from Coulomb barrier penetration, photon coupling to nuclear currents, and the electromagnetic components of nuclear masses. We find the primordial abundances to depend more weakly on alpha than previously estimated, by up to a factor of 2 in the case of ^7Li. We discuss the constraints on variations in alpha from the individual abundance measurements and the uncertainties affecting these constraints. While the present best measurements of primordial D/H, ^4He/H, and ^7Li/H may be reconciled pairwise by adjusting alpha and the universal baryon density, no value of alpha allows all three to be accommodated simultaneously without consideration of systematic error. The combination of measured abundances with observations of acoustic peaks in the cosmic microwave background favors no change in alpha within the uncertainties.Comment: Phys. Rev. D accepted version; minor changes in response to refere

    YREC: The Yale Rotating Stellar Evolution Code

    Get PDF
    The stellar evolution code YREC is outlined with emphasis on its applications to helio- and asteroseismology. The procedure for calculating calibrated solar and stellar models is described. Other features of the code such as a non-local treatment of convective core overshoot, and the implementation of a parametrized description of turbulence in stellar models, are considered in some detail. The code has been extensively used for other astrophysical applications, some of which are briefly mentioned at the end of the paper.Comment: 10 pages, 2 figures, ApSS accepte

    Recent Advances in Modeling Stellar Interiors

    Full text link
    Advances in stellar interior modeling are being driven by new data from large-scale surveys and high-precision photometric and spectroscopic observations. Here we focus on single stars in normal evolutionary phases; we will not discuss the many advances in modeling star formation, interacting binaries, supernovae, or neutron stars. We review briefly: 1) updates to input physics of stellar models; 2) progress in two and three-dimensional evolution and hydrodynamic models; 3) insights from oscillation data used to infer stellar interior structure and validate model predictions (asteroseismology). We close by highlighting a few outstanding problems, e.g., the driving mechanisms for hybrid gamma Dor/delta Sct star pulsations, the cause of giant eruptions seen in luminous blue variables such as eta Car and P Cyg, and the solar abundance problem.Comment: Proceedings for invited talk at conference High Energy Density Laboratory Astrophysics 2010, Caltech, March 2010, submitted for special issue of Astrophysics and Space Science; 7 pages; 5 figure

    Growth and nutrient absorption of Cape Gooseberry (Physalis Peruviana L.) in soilless culture

    Full text link
    "This is an Author's Accepted Manuscript of an article published in [include the complete citation information for the final version of the article as published in the Journal of Plant Nutrition 2015 March, available online at: http://www.tandfonline.com/10.1080/01904167.2014.934474."Cape gooseberry (Physalis peruviana L.) is a solanaceous plant. The growth and time-course of nutrient accumulation of the plant and its partitioning between roots, stems, leaves, and fruits were examined. The study was conducted analyzing two nutrient solutions in soilless culture under greenhouse conditions during two consecutive seasons. The macronutrient contents were analyzed. On average, the yield was 8.9 t.ha(-1). Growth of the plant until 90 d after transplanting obeys an exponential function of time and the relative growth rate for this period was determined. Nitrogen (N) was the element that showed the highest concentration, corresponding to leaves (4.67%), followed by potassium (K) in stems (4.46%). The highest accumulations of N, phosphorous (P), calcium (Ca), and magnesium (Mg) were found in leaves and of K in the stems. Potassium showed the highest nutrient accumulation (29 g.plant(-1)) and the highest specific uptake rate.Torres Rubio, JF.; Pascual Seva, N.; San Bautista Primo, A.; Pascual España, B.; López Galarza, SV.; Alagarda Pardo, J.; Maroto Borrego, JV. (2015). Growth and nutrient absorption of Cape Gooseberry (Physalis Peruviana L.) in soilless culture. Journal of Plant Nutrition. 38(4):485-496. doi:10.1080/01904167.2014.934474S485496384Bellaloui, N., & Brown, P. H. (1998). Plant and Soil, 198(2), 153-158. doi:10.1023/a:1004343031242Bennett, J. P., Oshima, R. J., & Lippert, L. F. (1979). Effects of ozone on injury and dry matter partitioning in pepper plants. Environmental and Experimental Botany, 19(1), 33-39. doi:10.1016/0098-8472(79)90022-4CAUSTON, D. R. (1991). Plant Growth Analysis: The Variability of Relative Growth Rate Within a Sample. Annals of Botany, 67(2), 137-144. doi:10.1093/oxfordjournals.aob.a088112Convenio MAG-IICA (Ministerio de Agricultura y Ganadería. Institución Interamericana de Cooperación para la Agricultura). 2001. The cape gooseberry (Physalis peruvianaL.Physalis edulis). Subprograma de Cooperación Técnica, Ecuador. Available at: http://www.sica.gov.ec/agronegocios/Biblioteca/Convenio%20MAG%20IICA/productos/uvilla_mag.pdf (Accessed July 2007, in Spanish).El-Tohamy, W. A., El-Abagy, H. M., Abou-Hussein, S. D., & Gruda, N. (2009). Response of Cape gooseberry (Physalis peruviana L.) to nitrogen application under sandy soil conditions. Gesunde Pflanzen, 61(3-4), 123-127. doi:10.1007/s10343-009-0211-0Fresquet, J., Pascual, B., López-Galarza, S., Bautista, S., Baixauli, C., Gisbert, J. M., & Maroto, J. V. (2001). Nutrient uptake of pepino plants in soilless cultivation. The Journal of Horticultural Science and Biotechnology, 76(3), 338-343. doi:10.1080/14620316.2001.11511373Heuvelink, E., Bakker, M. J., Elings, A., Kaarsemaker, R. C., & Marcelis, L. F. M. (2005). EFFECT OF LEAF AREA ON TOMATO YIELD. Acta Horticulturae, (691), 43-50. doi:10.17660/actahortic.2005.691.2Leskovar, D. I., & Cantliffe, D. J. (1993). Comparison of Plant Establishment Method, Transplant, or Direct Seeding on Growth and Yield of Bell Pepper. Journal of the American Society for Horticultural Science, 118(1), 17-22. doi:10.21273/jashs.118.1.17Marcelis, L. F. M. (1993). Fruit growth and biomass allocation to the fruits in cucumber. 1. Effect of fruit load and temperature. Scientia Horticulturae, 54(2), 107-121. doi:10.1016/0304-4238(93)90059-yPuente, L. A., Pinto-Muñoz, C. A., Castro, E. S., & Cortés, M. (2011). Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Research International, 44(7), 1733-1740. doi:10.1016/j.foodres.2010.09.034Radford, P. J. (1967). Growth Analysis Formulae - Their Use and Abuse1. Crop Science, 7(3), 171. doi:10.2135/cropsci1967.0011183x000700030001xRamadan, M. F., & Moersel, J. T. (2007). Impact of enzymatic treatment on chemical composition, physicochemical properties and radical scavenging activity of goldenberry (Physalis peruviana L.) juice. Journal of the Science of Food and Agriculture, 87(3), 452-460. doi:10.1002/jsfa.2728Ramadan, M. F., & Moersel, J.-T. (2009). Oil extractability from enzymatically treated goldenberry (Physalis peruvianaL.) pomace: range of operational variables. International Journal of Food Science & Technology, 44(3), 435-444. doi:10.1111/j.1365-2621.2006.01511.xSalazar, M. R., Jones, J. W., Chaves, B., & Cooman, A. (2008). A model for the potential production and dry matter distribution of Cape gooseberry (Physalis peruviana L.). Scientia Horticulturae, 115(2), 142-148. doi:10.1016/j.scienta.2007.08.015Scholberg, J., McNeal, B. L., Jones, J. W., Boote, K. J., Stanley, C. D., & Obreza, T. A. (2000). Growth and Canopy Characteristics of Field-Grown Tomato. Agronomy Journal, 92(1), 152. doi:10.2134/agronj2000.921152xTrinchero, G. D., Sozzi, G. O., Cerri, A. M., Vilella, F., & Fraschina, A. A. (1999). Ripening-related changes in ethylene production, respiration rate and cell-wall enzyme activity in goldenberry (Physalis peruviana L.), a solanaceous species. Postharvest Biology and Technology, 16(2), 139-145. doi:10.1016/s0925-5214(99)00011-3Turner, A. (1994). Dry Matter Assimilation and Partitioning in Pepper Cultivars Differing in Susceptibility to Stress-induced Bud and Flower Abscission. Annals of Botany, 73(6), 617-622. doi:10.1006/anbo.1994.1077WILLIAMS, R. F. (1946). The Physiology of Plant Growth with Special Reference to the Concept of Net Assimilation Rate. Annals of Botany, 10(1), 41-72. doi:10.1093/oxfordjournals.aob.a083119Zapata, J.L., A. Saldarriaga, M. Londoño, and C. Díaz. 2002. Cape gooseberry Management in Colombia. Antioquia, Colombia: Rionegro, Programa Nacional de Transferencia de Tecnología Agropecuaria - Corpoica Regional Cuatro (in Spanish).Zerihun, A. (2000). Compensatory Roles of Nitrogen Uptake and Photosynthetic N-use Efficiency in Determining Plant Growth Response to Elevated CO2: Evaluation Using a Functional Balance Model. Annals of Botany, 86(4), 723-730. doi:10.1006/anbo.2000.123

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore