1,000 research outputs found
Legal Responsibility for Public Library Development: United States, Canada, Scandinavia, Nigeria, and South Africa
published or submitted for publicatio
Trace Complexity of Chaotic Reversible Cellular Automata
Delvenne, K\r{u}rka and Blondel have defined new notions of computational
complexity for arbitrary symbolic systems, and shown examples of effective
systems that are computationally universal in this sense. The notion is defined
in terms of the trace function of the system, and aims to capture its dynamics.
We present a Devaney-chaotic reversible cellular automaton that is universal in
their sense, answering a question that they explicitly left open. We also
discuss some implications and limitations of the construction.Comment: 12 pages + 1 page appendix, 4 figures. Accepted to Reversible
Computation 2014 (proceedings published by Springer
Discovery of a new Y dwarf: WISE J030449.03-270508.3
This is a pre-copyedited, author-produced PDF of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record [D. J. Pinfield, et al, Discovery of a new Y dwarf: WISE J030449.03−270508.3, MNRAS, Vol. 444 (2): 1931-1939, September 2014] is available online at: https://doi.org/10.1093/mnras/stu1540.We present a new Y dwarf, WISE J030449.03−270508.3, confirmed from a candidate sample designed to pick out low-temperature objects from the Wide-field Infrared Survey Explorer (WISE) data base. The new object is typed Y0pec following a visual comparison with spectral standards, and lies at a likely distance of 10–17 pc. Its tangential velocity suggests thin disc membership, but it shows some spectral characteristics that suggest that it may be metal poor and/or older than previously identified Y0 dwarfs. Based on trends seen for warmer late-type T dwarfs, the Y-band flux peak morphology is indicative of sub-solar metallicity, and the enhanced red wing of the J-band flux peak offers evidence for high gravity and/or low metallicity (with associated model trends suggesting an age closer to ∼10 Gyr and mass in the range 0.02–0.03 Mȯ). This object may thus be extending the population parameter space of the known Y0 dwarfs.Peer reviewe
Impact of densitized lapse slicings on evolutions of a wobbling black hole
We present long-term stable and second-order convergent evolutions of an
excised wobbling black hole. Our results clearly demonstrate that the use of a
densitized lapse function extends the lifetime of simulations dramatically. We
also show the improvement in the stability of single static black holes when an
algebraic densitized lapse condition is applied. In addition, we introduce a
computationally inexpensive approach for tracking the location of the
singularity suitable for mildly distorted black holes. The method is based on
investigating the fall-off behavior and asymmetry of appropriate grid
variables. This simple tracking method allows one to adjust the location of the
excision region to follow the coordinate motion of the singularity.Comment: 10 pages, 8 figure
A progressive refinement approach for the visualisation of implicit surfaces
Visualising implicit surfaces with the ray casting method is a slow procedure. The design cycle of a new implicit surface is, therefore, fraught with long latency times as a user must wait for the surface to be rendered before being able to decide what changes should be introduced in the next iteration. In this paper, we present an attempt at reducing the design cycle of an implicit surface modeler by introducing a progressive refinement rendering approach to the visualisation of implicit surfaces. This progressive refinement renderer provides a quick previewing facility. It first displays a low quality estimate of what the final rendering is going to be and, as the computation progresses, increases the quality of this estimate at a steady rate. The progressive refinement algorithm is based on the adaptive subdivision of the viewing frustrum into smaller cells. An estimate for the variation of the implicit function inside each cell is obtained with an affine arithmetic range estimation technique. Overall, we show that our progressive refinement approach not only provides the user with visual feedback as the rendering advances but is also capable of completing the image faster than a conventional implicit surface rendering algorithm based on ray casting
Extending the lifetime of 3D black hole computations with a new hyperbolic system of evolution equations
We present a new many-parameter family of hyperbolic representations of
Einstein's equations, which we obtain by a straightforward generalization of
previously known systems. We solve the resulting evolution equations
numerically for a Schwarzschild black hole in three spatial dimensions, and
find that the stability of the simulation is strongly dependent on the form of
the equations (i.e. the choice of parameters of the hyperbolic system),
independent of the numerics. For an appropriate range of parameters we can
evolve a single 3D black hole to -- , and are
apparently limited by constraint-violating solutions of the evolution
equations. We expect that our method should result in comparable times for
evolutions of a binary black hole system.Comment: 11 pages, 2 figures, submitted to PR
Relativistic Hydrodynamic Evolutions with Black Hole Excision
We present a numerical code designed to study astrophysical phenomena
involving dynamical spacetimes containing black holes in the presence of
relativistic hydrodynamic matter. We present evolutions of the collapse of a
fluid star from the onset of collapse to the settling of the resulting black
hole to a final stationary state. In order to evolve stably after the black
hole forms, we excise a region inside the hole before a singularity is
encountered. This excision region is introduced after the appearance of an
apparent horizon, but while a significant amount of matter remains outside the
hole. We test our code by evolving accurately a vacuum Schwarzschild black
hole, a relativistic Bondi accretion flow onto a black hole, Oppenheimer-Snyder
dust collapse, and the collapse of nonrotating and rotating stars. These
systems are tracked reliably for hundreds of M following excision, where M is
the mass of the black hole. We perform these tests both in axisymmetry and in
full 3+1 dimensions. We then apply our code to study the effect of the stellar
spin parameter J/M^2 on the final outcome of gravitational collapse of rapidly
rotating n = 1 polytropes. We find that a black hole forms only if J/M^2<1, in
agreement with previous simulations. When J/M^2>1, the collapsing star forms a
torus which fragments into nonaxisymmetric clumps, capable of generating
appreciable ``splash'' gravitational radiation.Comment: 17 pages, 14 figures, submitted to PR
A geometric approach to time evolution operators of Lie quantum systems
Lie systems in Quantum Mechanics are studied from a geometric point of view.
In particular, we develop methods to obtain time evolution operators of
time-dependent Schrodinger equations of Lie type and we show how these methods
explain certain ad hoc methods used in previous papers in order to obtain exact
solutions. Finally, several instances of time-dependent quadratic Hamiltonian
are solved.Comment: Accepted for publication in the International Journal of Theoretical
Physic
A Model for the Development of the Rhizobial and Arbuscular Mycorrhizal Symbioses in Legumes and Its Use to Understand the Roles of Ethylene in the Establishment of these two Symbioses
We propose a model depicting the development of nodulation and arbuscular mycorrhizae. Both processes are dissected into many steps, using Pisum sativum L. nodulation mutants as a guideline. For nodulation, we distinguish two main developmental programs, one epidermal and one cortical. Whereas Nod factors alone affect the cortical program, bacteria are required to trigger the epidermal events. We propose that the two programs of the rhizobial symbiosis evolved separately and that, over time, they came to function together. The distinction between these two programs does not exist for arbuscular mycorrhizae development despite events occurring in both root tissues. Mutations that affect both symbioses are restricted to the epidermal program. We propose here sites of action and potential roles for ethylene during the formation of the two symbioses with a specific hypothesis for nodule organogenesis. Assuming the epidermis does not make ethylene, the microsymbionts probably first encounter a regulatory level of ethylene at the epidermis–outermost cortical cell layer interface. Depending on the hormone concentrations there, infection will either progress or be blocked. In the former case, ethylene affects the cortex cytoskeleton, allowing reorganization that facilitates infection; in the latter case, ethylene acts on several enzymes that interfere with infection thread growth, causing it to abort. Throughout this review, the difficulty of generalizing the roles of ethylene is emphasized and numerous examples are given to demonstrate the diversity that exists in plants
- …
