396 research outputs found
Resonant and nonresonant D+ -> K- pi+ l+ nu(l) semileptonic decays
We analyse the semileptonic decay D+ -> K- pi+ l+ nu(l) using an effective
Lagrangian developed previously to describe the decays D -> P l nu(l) and D ->
V l nu(l). Light vector mesons are included in the model which combines the
heavy quark effective Lagrangian and chiral perturbation theory approach. The
nonresonant and resonant contributions are compared. With no new parameters the
model correctly reproduces the measured ratio Gamma(nres)/Gamma(nres + res). We
also present useful nonresonant decay distributions. Finally, a similar model,
but with a modified current which satisfies the soft pion theorems at the
expense of introducing another parameter, is analyzed and the results of the
models are compared.Comment: 17 pages, 3 Postscript figures, standard Latex, extended revision,
title, abstract and text (especially Sec. IV) changed, results unchange
Entrance-channel Mass-asymmetry Dependence of Compound-nucleus Formation Time in Light Heavy-ion Reactions
The entrance-channel mass-asymmetry dependence of the compound nucleus
formation time in light heavy-ion reactions has been investigated within the
framework of semiclassical dissipative collision models. the model calculations
have been succesfully applied to the formation of the Ar compound
nucleus as populated via the Be+Si, B+Al,
C+Mg and F+F entrance channels. The shape evolution
of several other light composite systems appears to be consistent with the
so-called "Fusion Inhibition Factor" which has been experimentally observed. As
found previously in more massive systems for the fusion-evaporation process,
the entrance-channel mass-asymmetry degree of freedom appears to determine the
competition between the different mechanisms as well as the time scales
involved.Comment: 12 pages, 3 Figures available upon request, Submitted at Phys. Rev.
Determination of the Strange Quark Content of the Nucleon from a Next-to-Leading-Order QCD Analysis of Neutrino Charm Production
We present the first next-to-leading-order QCD analysis of neutrino charm
production, using a sample of 6090 - and -induced
opposite-sign dimuon events observed in the CCFR detector at the Fermilab
Tevatron. We find that the nucleon strange quark content is suppressed with
respect to the non-strange sea quarks by a factor , where the error includes statistical, systematic and
QCD scale uncertainties. In contrast to previous leading order analyses, we
find that the strange sea -dependence is similar to that of the non-strange
sea, and that the measured charm quark mass, , is larger and consistent with that determined in other processes.
Further analysis finds that the difference in -distributions between
and is small. A measurement of the Cabibbo-Kobayashi-Maskawa
matrix element is also presented.
uufile containing compressed postscript files of five Figures is appended at
the end of the LaTeX source.Comment: Nevis R#150
Strong Decays of Strange Quarkonia
In this paper we evaluate strong decay amplitudes and partial widths of
strange mesons (strangeonia and kaonia) in the 3P0 decay model. We give
numerical results for all energetically allowed open-flavor two-body decay
modes of all nsbar and ssbar strange mesons in the 1S, 2S, 3S, 1P, 2P, 1D and
1F multiplets, comprising strong decays of a total of 43 resonances into 525
two-body modes, with 891 numerically evaluated amplitudes. This set of
resonances includes all strange qqbar states with allowed strong decays
expected in the quark model up to ca. 2.2 GeV. We use standard nonrelativistic
quark model SHO wavefunctions to evaluate these amplitudes, and quote numerical
results for all amplitudes present in each decay mode. We also discuss the
status of the associated experimental candidates, and note which states and
decay modes would be especially interesting for future experimental study at
hadronic, e+e- and photoproduction facilities. These results should also be
useful in distinguishing conventional quark model mesons from exotica such as
glueballs and hybrids through their strong decays.Comment: 69 pages, 5 figures, 39 table
Leptonic and Semileptonic Decays of Charm and Bottom Hadrons
We review the experimental measurements and theoretical descriptions of
leptonic and semileptonic decays of particles containing a single heavy quark,
either charm or bottom. Measurements of bottom semileptonic decays are used to
determine the magnitudes of two fundamental parameters of the standard model,
the Cabibbo-Kobayashi-Maskawa matrix elements and . These
parameters are connected with the physics of quark flavor and mass, and they
have important implications for the breakdown of CP symmetry. To extract
precise values of and from measurements, however,
requires a good understanding of the decay dynamics. Measurements of both charm
and bottom decay distributions provide information on the interactions
governing these processes. The underlying weak transition in each case is
relatively simple, but the strong interactions that bind the quarks into
hadrons introduce complications. We also discuss new theoretical approaches,
especially heavy-quark effective theory and lattice QCD, which are providing
insights and predictions now being tested by experiment. An international
effort at many laboratories will rapidly advance knowledge of this physics
during the next decade.Comment: This review article will be published in Reviews of Modern Physics in
the fall, 1995. This file contains only the abstract and the table of
contents. The full 168-page document including 47 figures is available at
http://charm.physics.ucsb.edu/papers/slrevtex.p
Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory
Atmospheric parameters, such as pressure (P), temperature (T) and density,
affect the development of extensive air showers initiated by energetic cosmic
rays. We have studied the impact of atmospheric variations on extensive air
showers by means of the surface detector of the Pierre Auger Observatory. The
rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find
that the observed behaviour is explained by a model including the effects
associated with the variations of pressure and density. The former affects the
longitudinal development of air showers while the latter influences the Moliere
radius and hence the lateral distribution of the shower particles. The model is
validated with full simulations of extensive air showers using atmospheric
profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle
Physic
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter
Data collected by the Pierre Auger Observatory through 31 August 2007 showed
evidence for anisotropy in the arrival directions of cosmic rays above the
Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{eV}. The
anisotropy was measured by the fraction of arrival directions that are less
than from the position of an active galactic nucleus within 75 Mpc
(using the V\'eron-Cetty and V\'eron catalog). An updated
measurement of this fraction is reported here using the arrival directions of
cosmic rays recorded above the same energy threshold through 31 December 2009.
The number of arrival directions has increased from 27 to 69, allowing a more
precise measurement. The correlating fraction is , compared
with expected for isotropic cosmic rays. This is down from the early
estimate of . The enlarged set of arrival directions is
examined also in relation to other populations of nearby extragalactic objects:
galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in
hard X-rays by the Swift Burst Alert Telescope. A celestial region around the
position of the radiogalaxy Cen A has the largest excess of arrival directions
relative to isotropic expectations. The 2-point autocorrelation function is
shown for the enlarged set of arrival directions and compared to the isotropic
expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201
Measurement of D*+/- meson production in jets from pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
This paper reports a measurement of D*+/- meson production in jets from
proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV at the
CERN Large Hadron Collider. The measurement is based on a data sample recorded
with the ATLAS detector with an integrated luminosity of 0.30 pb^-1 for jets
with transverse momentum between 25 and 70 GeV in the pseudorapidity range
|eta| < 2.5. D*+/- mesons found in jets are fully reconstructed in the decay
chain: D*+ -> D0pi+, D0 -> K-pi+, and its charge conjugate. The production rate
is found to be N(D*+/-)/N(jet) = 0.025 +/- 0.001(stat.) +/- 0.004(syst.) for
D*+/- mesons that carry a fraction z of the jet momentum in the range 0.3 < z <
1. Monte Carlo predictions fail to describe the data at small values of z, and
this is most marked at low jet transverse momentum.Comment: 10 pages plus author list (22 pages total), 5 figures, 1 table,
matches published version in Physical Review
- …
