767 research outputs found

    Traditional and Health-Related Philanthropy: The Role of Resources and Personality

    Get PDF
    I study the relationships of resources and personality characteristics to charitable giving, postmortem organ donation, and blood donation in a nationwide sample of persons in households in the Netherlands. I find that specific personality characteristics are related to specific types of giving: agreeableness to blood donation, empathic concern to charitable giving, and prosocial value orientation to postmortem organ donation. I find that giving has a consistently stronger relation to human and social capital than to personality. Human capital increases giving; social capital increases giving only when it is approved by others. Effects of prosocial personality characteristics decline at higher levels of these characteristics. Effects of empathic concern, helpfulness, and social value orientations on generosity are mediated by verbal proficiency and church attendance.

    Estimating the feasibility of transition paths in extended finite state machines

    Get PDF
    There has been significant interest in automating testing on the basis of an extended finite state machine (EFSM) model of the required behaviour of the implementation under test (IUT). Many test criteria require that certain parts of the EFSM are executed. For example, we may want to execute every transition of the EFSM. In order to find a test suite (set of input sequences) that achieves this we might first derive a set of paths through the EFSM that satisfy the criterion using, for example, algorithms from graph theory. We then attempt to produce input sequences that trigger these paths. Unfortunately, however, the EFSM might have infeasible paths and the problem of determining whether a path is feasible is generally undecidable. This paper describes an approach in which a fitness function is used to estimate how easy it is to find an input sequence to trigger a given path through an EFSM. Such a fitness function could be used in a search-based approach in which we search for a path with good fitness that achieves a test objective, such as executing a particular transition, and then search for an input sequence that triggers the path. If this second search fails then we search for another path with good fitness and repeat the process. We give a computationally inexpensive approach (fitness function) that estimates the feasibility of a path. In order to evaluate this fitness function we compared the fitness of a path with the ease with which an input sequence can be produced using search to trigger the path and we used random sampling in order to estimate this. The empirical evidence suggests that a reasonably good correlation (0.72 and 0.62) exists between the fitness of a path, produced using the proposed fitness function, and an estimate of the ease with which we can randomly generate an input sequence to trigger the path

    Towards Activity Context using Software Sensors

    Full text link
    Service-Oriented Computing delivers the promise of configuring and reconfiguring software systems to address user's needs in a dynamic way. Context-aware computing promises to capture the user's needs and hence the requirements they have on systems. The marriage of both can deliver ad-hoc software solutions relevant to the user in the most current fashion. However, here it is a key to gather information on the users' activity (that is what they are doing). Traditionally any context sensing was conducted with hardware sensors. However, software can also play the same role and in some situations will be more useful to sense the activity of the user. Furthermore they can make use of the fact that Service-oriented systems exchange information through standard protocols. In this paper we discuss our proposed approach to sense the activity of the user making use of software

    Scaling analysis of electron transport through metal-semiconducting carbon nanotube interfaces: Evolution from the molecular limit to the bulk limit

    Full text link
    We present a scaling analysis of electronic and transport properties of metal-semiconducting carbon nanotube interfaces as a function of the nanotube length within the coherent transport regime, which takes fully into account atomic-scale electronic structure and three-dimensional electrostatics of the metal-nanotube interface using a real-space Green's function based self-consistent tight-binding theory. As the first example, we examine devices formed by attaching finite-size single-wall carbon nanotubes (SWNT) to both high- and low- work function metallic electrodes through the dangling bonds at the end. We analyze the nature of Schottky barrier formation at the metal-nanotube interface by examining the electrostatics, the band lineup and the conductance of the metal-SWNT molecule-metal junction as a function of the SWNT molecule length and metal-SWNT coupling strength. We show that the confined cylindrical geometry and the atomistic nature of electronic processes across the metal-SWNT interface leads to a different physical picture of band alignment from that of the planar metal-semiconductor interface. We analyze the temperature and length dependence of the conductance of the SWNT junctions, which shows a transition from tunneling- to thermal activation-dominated transport with increasing nanotube length. The temperature dependence of the conductance is much weaker than that of the planar metal-semiconductor interface due to the finite number of conduction channels within the SWNT junctions. We find that the current-voltage characteristics of the metal-SWNT molecule-metal junctions are sensitive to models of the potential response to the applied source/drain bias voltages.Comment: Minor revision to appear in Phys. Rev. B. Color figures available in the online PRB version or upon request to: [email protected]

    Cost effectiveness of thrombolytic therapy with tissue plasminogen activator as compared with streptokinase for acute myocardial infarction

    Get PDF
    BACKGROUND. Patients with acute myocardial infarction who were treated with accelerated tissue plasminogen activator (t-PA) (given over a period of 1 1/2 hours rather than the conventional 3 hours, and with two thirds of the dose given in the first 30 minutes) had a 30-day mortality that was 15 percent lower than that of pati

    Targeting of the MAPK and AKT pathways in conjunctival melanoma shows potential synergy

    Get PDF
    Purpose: Conjunctival melanoma (CM) is a rare but lethal form of cancer. Similar to cutaneous melanoma, CM frequently carries activating mutations in BRAF and NRAS. We studied whether CM as well as conjunctival benign and premalignant melanocytic lesions express targets in the mitogen-activated protein kinase (MAPK) and AKT pathways, and whether specific inhibitors can suppress CM growth in vitro. Methods: 131 conjunctival lesions obtained from 129 patients were collected. The presence of BRAF V600E mutation and expression of phosphorylated (p)-ERK and p-AKT were assessed by immunohistochemistry. We studied cell proliferation, phosphorylation, cell cycling and apoptosis in three CM cell lines using two BRAF inhibitors (Vemurafenib and Dabrafenib), a MEK inhibitor (MEK162) and an AKT inhibitor (MK2206). Results: The BRAF V600E mutation was present in 19% of nevi and 26% of melanomas, but not in primary acquired melanosis (PAM). Nuclear and cytoplasmic p-ERK and p-AKT were expressed in all conjunctival lesions. Both BRAF inhibitors suppressed growth of both BRAF mutant CM cell lines, but only one induced cell death. MEK162 and MK2206 inhibited proliferation of CM cells in a dose-dependent manner, and the combination of these two drugs led to synergistic growth inhibition and cell death in all CM cell lines. Conclusion: ERK and AKT are constitutively activated in conjunctival nevi, PAM and melanoma. While BRAF inhibitors prohibited cell growth, they were not always cytotoxic. Combining MEK and AKT inhibitors led to more growth inhibition and cell death in CM cells. The combination may benefit patients suffering from metastatic conjunctival melanoma

    Universality and Critical Phenomena in String Defect Statistics

    Get PDF
    The idea of biased symmetries to avoid or alleviate cosmological problems caused by the appearance of some topological defects is familiar in the context of domain walls, where the defect statistics lend themselves naturally to a percolation theory description, and for cosmic strings, where the proportion of infinite strings can be varied or disappear entirely depending on the bias in the symmetry. In this paper we measure the initial configurational statistics of a network of string defects after a symmetry-breaking phase transition with initial bias in the symmetry of the ground state. Using an improved algorithm, which is useful for a more general class of self-interacting walks on an infinite lattice, we extend the work in \cite{MHKS} to better statistics and a different ground state manifold, namely RP2\R P^2, and explore various different discretisations. Within the statistical errors, the critical exponents of the Hagedorn transition are found to be quite possibly universal and identical to the critical exponents of three-dimensional bond or site percolation. This improves our understanding of the percolation theory description of defect statistics after a biased phase transition, as proposed in \cite{MHKS}. We also find strong evidence that the existence of infinite strings in the Vachaspati Vilenkin algorithm is generic to all (string-bearing) vacuum manifolds, all discretisations thereof, and all regular three-dimensional lattices.Comment: 62 pages, plain LaTeX, macro mathsymb.sty included, figures included. also available on http://starsky.pcss.maps.susx.ac.uk/groups/pt/preprints/96/96011.ps.g

    High Irritation and Removal Rates After Plate or Nail Fixation in Patients With Displaced Midshaft Clavicle Fractures

    Get PDF
    Background: Studies comparing plate with intramedullary nail fixation of displaced midshaft clavicle fractures show faster recovery in the plate group and implant-related complications in both groups after short-term followup (6 or 12 months). Knowledge of disability, complications, and removal rates beyond the first postoperative year will help surgeons in making a decision regarding optimal implant choice. However, comparative studies with followup beyond the first year or two are scarce. Questions/purposes: We asked: (1) Does plate fixation or intramedullary nail fixation for displaced midshaft clavicle fractures result in less disability? (2) Which type of fixation, plate or intramedullary, is more frequently associated with implant-related irritation and implant removal? (3) Is plate or intramedullary fixation associated with postoperative complications beyond the first postoperative year? Methods: Between January 2011 and August 2012, patients with displaced midshaft clavicle fractures were enrolled and randomized to plate or intramedullary nail fixation. A total of 58 patients with plate and 62 patients with intramedullary nails initially were enrolled. Minimum followup was 30 months (mean, 39 months; range, 30–51 months). Two patients (3%) with plate fixation and two patients (3%) with intramedullary nails were lost to followup. The Qui
    corecore