950 research outputs found

    Monte Carlo Simulations for the Magnetic Phase Diagram of the Double Exchange Hamiltonian

    Full text link
    We have used Monte Carlo simulation techniques to obtain the magnetic phase diagram of the double exchange Hamiltonian. We have found that the Berry's phase of the hopping amplitude has a negligible effect in the value of the magnetic critical temperature. To avoid finite size problems in our simulations we have also developed an approximated expression for the double exchange energy. This allows us to obtain the critical temperature for the ferromagnetic to paramagnetic transition more accurately. In our calculations we do not observe any strange behavior in the kinetic energy, chemical potential or electron density of states near the magnetic critical temperature. Therefore, we conclude that other effects, not included in the double exchange Hamiltonian, are needed to understand the metal-insulator transition which occurs in the manganites.Comment: 6 pages Revtex, 8 PS figure

    Renormalization Group Approach to the Coulomb Pseudopotential for C_{60}

    Full text link
    A numerical renormalization group technique recently developed by one of us is used to analyse the Coulomb pseudopotential (μ{\mu^*}) in C60{{\rm C}_{60}} for a variety of bare potentials. We find a large reduction in μ{\mu^*} due to intraball screening alone, leading to an interesting non-monotonic dependence of μ{\mu^*} on the bare interaction strength. We find that μ{\mu^*} is positive for physically reasonable bare parameters, but small enough to make the electron-phonon coupling a viable mechanism for superconductivity in alkali-doped fullerides. We end with some open problems.Comment: 12 pages, latex, 7 figures available from [email protected]

    Effects of Boson Dispersion in Fermion-Boson Coupled Systems

    Full text link
    We study the nonlinear feedback in a fermion-boson system using an extension of dynamical mean-field theory and the quantum Monte Carlo method. In the perturbative regimes (weak-coupling and atomic limits) the effective interaction among fermions increases as the width of the boson dispersion increases. In the strong coupling regime away from the anti-adiabatic limit, the effective interaction decreases as we increase the width of the boson dispersion. This behavior is closely related with complete softening of the boson field. We elucidate the parameters that control this nonperturbative region where fluctuations of the dispersive bosons enhance the delocalization of fermions.Comment: 14 pages RevTeX including 12 PS figure

    Comparative study on the hydrogenation of naphthalene over both Al2O3‑supported Pd and NiMo catalysts against a novel LDH-derived Ni-MMO-supported Mo catalyst

    Get PDF
    Naphthalene hydrogenation was studied over a novel Ni–Al-layered double hydroxide-derived Mo-doped mixed metal oxide (Mo-MMO), contrasted against bifunctional NiMo/Al2O3, and Pd-doped Al2O3 catalysts, the latter of which with Pd loadings of 1, 2, and 5 wt %. Reaction rate constants were derived from a pseudo-first-order kinetic pathway describing a two-step hydrogenation pathway to tetralin (k1) and decalin (k2). The Mo-MMO catalyst achieved comparable reaction rates to Pd2%/Al2O3 at double concentration. When using Pd5%/Al2O3, tetralin hydrogenation was favored over naphthalene hydrogenation culminating in a k2 value of 0.224 compared to a k1 value of 0.069. Ni- and Mo-based catalysts produced the most significant cis-decalin production, with Mo-MMO culminating at a cis/trans ratio of 0.62 as well as providing enhanced activity in naphthalene hydrogenation compared to NiMo/Al2O3. Consequently, Mo-MMO presents an opportunity to generate more alkyl naphthenes in subsequent hydrodecyclization reactions and therefore a higher cetane number in transport fuels. This is contrasted by a preferential production of trans-decalin observed when using all of the Al2O3-supported Pd catalysts, as a result of octalin intermediate orientations on the catalyst surface as a function of the electronic properties of Pd catalyst

    Conductance as a Function of the Temperature in the Double Exchange Model

    Full text link
    We have used the Kubo formula to calculate the temperature dependence of the electrical conductance of the double exchange Hamiltonian. We average the conductance over an statistical ensemble of clusters, which are obtained by performing Monte Carlo simulations on the classical spin orientation of the double exchange Hamiltonian. We find that for electron concentrations bigger than 0.1, the system is metallic at all temperatures. In particular it is not observed any change in the temperature dependence of the resistivity near the magnetical critical temperature. The calculated resistivity near TcT_c is around ten times smaller than the experimental value. We conclude that the double exchange model is not able to explain the metal to insulator transition which experimentally occurs at temperatures near the magnetic critical temperature.Comment: 6 pages, 5 figures included in the tex

    Colossal dielectric constants in transition-metal oxides

    Get PDF
    Many transition-metal oxides show very large ("colossal") magnitudes of the dielectric constant and thus have immense potential for applications in modern microelectronics and for the development of new capacitance-based energy-storage devices. In the present work, we thoroughly discuss the mechanisms that can lead to colossal values of the dielectric constant, especially emphasising effects generated by external and internal interfaces, including electronic phase separation. In addition, we provide a detailed overview and discussion of the dielectric properties of CaCu3Ti4O12 and related systems, which is today's most investigated material with colossal dielectric constant. Also a variety of further transition-metal oxides with large dielectric constants are treated in detail, among them the system La2-xSrxNiO4 where electronic phase separation may play a role in the generation of a colossal dielectric constant.Comment: 31 pages, 18 figures, submitted to Eur. Phys. J. for publication in the Special Topics volume "Cooperative Phenomena in Solids: Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Hexadecylpalmitoyglycerol or ceramide is linked to similar glycophosphoinositol anchor‐like structures in Trypanosoma cruzi

    Get PDF
    The lipopeptidophosphoglycan from Trypanosoma cruzi is a glycosylated inositol‐phosphoceramide isolated from epimastigotes at the stationary phase of growth (4–5 days). We have now purified two similar glycoinositolphospholipids (glycoinositolphospholipid A and glycoinositolphospholipid B) from epimastigotes after the second day of culture growth. [3H]Palmitic acid was incorporated into 1‐O‐hexadecyl‐2‐O‐palmitoylglycerol in glycoinositolphospholipid A and into ceramide in glycoinositolphospholipid B. The lipids were released by incubation with glycosylphosphatidylinositol‐specific phospholipase C from Bacillus thuringiensis or by chemical methods. After alkaline hydrolysis, the lipids were analysed by GLC/MS. In glycoinositolphospholipid A the resulting lipids corresponded to 1‐O‐hexadecylglycerol and palmitic acid. The ceramide components in glycoinositolphospholipid B are sphinganine, palmitic acid and lignoceric acid. The oligosaccharides could be degraded by nitrous acid and further enzymic treatment showed that the two glycoinositolphospholipids isolated from T. cruzi share the common core structure of the glycosylphosphatidylinositol membrane anchors. The microheterogeneity was determined, as well as the substitution by galactose, and was mainly in the furanose configuration as was previously described for lipopeptidophosphoglycan. However, methylation analysis indicated that 20% of the galactose is in the pyranose from. Both glycoinositolphospholipids mainly differ in the lipid moiety. Copyright © 1993, Wiley Blackwell. All rights reservedFil:De Lederkremer, R.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Ramirez, M.I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Leptonic and Semileptonic Decays of Charm and Bottom Hadrons

    Get PDF
    We review the experimental measurements and theoretical descriptions of leptonic and semileptonic decays of particles containing a single heavy quark, either charm or bottom. Measurements of bottom semileptonic decays are used to determine the magnitudes of two fundamental parameters of the standard model, the Cabibbo-Kobayashi-Maskawa matrix elements VcbV_{cb} and VubV_{ub}. These parameters are connected with the physics of quark flavor and mass, and they have important implications for the breakdown of CP symmetry. To extract precise values of Vcb|V_{cb}| and Vub|V_{ub}| from measurements, however, requires a good understanding of the decay dynamics. Measurements of both charm and bottom decay distributions provide information on the interactions governing these processes. The underlying weak transition in each case is relatively simple, but the strong interactions that bind the quarks into hadrons introduce complications. We also discuss new theoretical approaches, especially heavy-quark effective theory and lattice QCD, which are providing insights and predictions now being tested by experiment. An international effort at many laboratories will rapidly advance knowledge of this physics during the next decade.Comment: This review article will be published in Reviews of Modern Physics in the fall, 1995. This file contains only the abstract and the table of contents. The full 168-page document including 47 figures is available at http://charm.physics.ucsb.edu/papers/slrevtex.p
    corecore