251 research outputs found

    The VLT-FLAMES survey of massive stars: observations in the Galactic clusters NGC3293, NGC4755 and NGC6611

    Get PDF
    We introduce a new survey of massive stars in the Galaxy and the Magellanic Clouds using the Fibre Large Array Multi-Element Spectrograph (FLAMES) instrument at the Very Large Telescope (VLT). Here we present observations of 269 Galactic stars with the FLAMES-Giraffe Spectrograph (R ~ 25,000), in fields centered on the open clusters NGC 3293, NGC 4755 and NGC 6611. These data are supplemented by a further 50 targets observed with the Fibre-Fed Extended Range Optical Spectrograph (FEROS, R = 48,000). Following a description of our scientific motivations and target selection criteria, the data reduction methods are described; of critical importance the FLAMES reduction pipeline is found to yield spectra that are in excellent agreement with less automated methods. Spectral classifications and radial velocity measurements are presented for each star, with particular attention paid to morphological peculiarities and evidence of binarity. These observations represent a significant increase in the known spectral content of NGC 3293 and NGC 4755, and will serve as standards against which our subsequent FLAMES observations in the Magellanic Clouds will be compared.Comment: 26 pages, 9 figures (reduced size). Accepted for publication in A&A. A copy with full res. figures is available from http://www.ing.iac.es/~cje/flames_mw.ps.gz. Minor changes following correction of proof

    Exclusion limits on the WIMP-nucleon cross-section from the Cryogenic Dark Matter Search

    Get PDF
    The Cryogenic Dark Matter Search (CDMS) employs low-temperature Ge and Si detectors to search for Weakly Interacting Massive Particles (WIMPs) via their elastic-scattering interactions with nuclei while discriminating against interactions of background particles. For recoil energies above 10 keV, events due to background photons are rejected with >99.9% efficiency, and surface events are rejected with >95% efficiency. The estimate of the background due to neutrons is based primarily on the observation of multiple-scatter events that should all be neutrons. Data selection is determined primarily by examining calibration data and vetoed events. Resulting efficiencies should be accurate to about 10%. Results of CDMS data from 1998 and 1999 with a relaxed fiducial-volume cut (resulting in 15.8 kg-days exposure on Ge) are consistent with an earlier analysis with a more restrictive fiducial-volume cut. Twenty-three WIMP candidate events are observed, but these events are consistent with a background from neutrons in all ways tested. Resulting limits on the spin-independent WIMP-nucleon elastic-scattering cross-section exclude unexplored parameter space for WIMPs with masses between 10-70 GeV c^{-2}. These limits border, but do not exclude, parameter space allowed by supersymmetry models and accelerator constraints. Results are compatible with some regions reported as allowed at 3-sigma by the annual-modulation measurement of the DAMA collaboration. However, under the assumptions of standard WIMP interactions and a standard halo, the results are incompatible with the DAMA most likely value at >99.9% CL, and are incompatible with the model-independent annual-modulation signal of DAMA at 99.99% CL in the asymptotic limit.Comment: 40 pages, 49 figures (4 in color), submitted to Phys. Rev. D; v.2:clarified conclusions, added content and references based on referee's and readers' comments; v.3: clarified introductory sections, added figure based on referee's comment

    The VMC survey. LII. Data release #7. Complete survey data and data from additional programmes

    Get PDF
    The near-infrared YJK_ Visual and Infrared Survey Telescope for Astronomy (VISTA) survey of the Magellanic Clouds (VMC) is complete, along with data from additional programmes contributing to the enhancement of its quality over the original footprints. This work presents the final data release of the VMC survey, which includes additional observations and provides an overview of the scientific results. The overall data quality has been revised and reprocessed standard data products that have previously appeared in earlier data releases are made available together with new data products. These include the individual stellar proper motions, reddening towards red clump stars, and source classifications. Several data products, such as the parameters of some variable stars and of background galaxies, from the VMC publications have been associated with a data release for the first time. The data were processed using the VISTA Data Flow System and additional products (e.g. catalogues with point-spread-function photometry and tables with stellar proper motions) were obtained with software developed by the survey team. This release supersedes all previous data releases of the VMC survey for the combined (deep-stacked) data products, whilst providing additional (complementary) images and catalogues of single observations per filter. Overall, it includes about 64 million detections, split nearly evenly between sources with stellar or galaxy profiles. The VMC survey provides a homogeneous data set resulting from deep and multi-epoch YJK_ imaging observations of the Large and Small Clouds, the Bridge, and two fields in the Stream. The VMC data represent a valuable counterpart for sources detected at other wavelengths for both stars and background galaxies

    TOI-811b and TOI-852b: New transiting brown dwarfs with similar masses and very different radii and ages from the TESS mission

    Get PDF
    We report the discovery of two transiting brown dwarfs (BDs), TOI-811b and TOI-852b, from NASA's Transiting Exoplanet Survey Satellite mission. These two transiting BDs have similar masses but very different radii and ages. Their host stars have similar masses, effective temperatures, and metallicities. The younger and larger transiting BD is TOI-811b at a mass of Mb = 59.9 ± 13.0MJ and radius of Rb = 1.26 ± 0.06RJ, and it orbits its host star in a period of P = 25.16551 ± 0.00004 days. We derive the host star's age of 93+61-29 Myr from an application of gyrochronology. The youth of this system, rather than external heating from its host star, is why this BD's radius is relatively large. This constraint on the youth of TOI-811b allows us to test substellar mass-radius evolutionary models at young ages where the radius of BDs changes rapidly. TOI-852b has a similar mass at Mb = 53.7 ± 1.4MJ but is much older (4 or 8 Gyr, based on bimodal isochrone results of the host star) and is also smaller with a radius of Rb = 0.83 ± 0.04RJ. TOI-852b's orbital period is P = 4.94561 ± 0.00008 days. TOI-852b joins the likes of other old transiting BDs that trace out the oldest substellar mass-radius evolutionary models where contraction of the BD's radius slows and approaches a constant value. Both host stars have a mass of M∗ = 1.32M⊙ ± 0.05 and differ in their radii, Teff, and [Fe/H], with TOI-811 having R∗ = 1.27 ± 0.09R⊙, Teff = 6107 ± 77 K, and [Fe/ H]=+0.40 ± 0.09 and TOI-852 having R∗ = 1.71 ± 0.04R⊙, Teff = 5768 ± 84 K, and [Fe/H]=+0.33 ± 0.09. We take this opportunity to examine how TOI-811b and TOI-852b serve as test points for young and old substellar isochrones, respectively

    TESS discovery of a super-earth and three sub-neptunes hosted by the bright, sunlike star HD 108236

    Get PDF
    We report the discovery and validation of four extrasolar planets hosted by the nearby, bright, Sun-like (G3V) star HD 108236 using data from the Transiting Exoplanet Survey Satellite (TESS). We present transit photometry, reconnaissance, and precise Doppler spectroscopy, as well as high-resolution imaging, to validate the planetary nature of the objects transiting HD 108236, also known as the TESS Object of Interest (TOI) 1233. The innermost planet is a possibly rocky super-Earth with a period of 3.79523+0.00047-0.00044 days and has a radius of 1.586 ± 0.098 R⊗.The outer planets are sub-Neptunes, with potential gaseous envelopes, having radii of 2.068+0.10-0.091 R⊗, 2.72 ± 0.11 R⊗, and 3.12+0.13-0.12 R⊗ and periods of 6.20370+0.00064-0.00052 days, 14.17555+0.00099-0.0011 days, and 19.5917+0.0022-0.0020 days, respectively. With V and Ks magnitudes of 9.2 and 7.6, respectively, the bright host star makes the transiting planets favorable targets for mass measurements and, potentially, for atmospheric characterization via transmission spectroscopy. HD 108236 is the brightest Sun-like star in the visual (V ) band known to host four or more transiting exoplanets. The discovered planets span a broad range of planetary radii and equilibrium temperatures and share a common history of insolation from a Sun-like star (R∗ = 0.888 ± 0.017 R⊙, Teff = 5730 ± 50 K), making HD 108236 an exciting, opportune cosmic laboratory for testing models of planet formation and evolution

    Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network

    Get PDF
    Gravitational-wave astronomy has been firmly established with the detection of gravitational waves from the merger of ten stellar-mass binary black holes and a neutron star binary. This paper reports on the all-sky search for gravitational waves from intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. The search uses three independent algorithms: two based on matched filtering of the data with waveform templates of gravitational-wave signals from compact binaries, and a third, model-independent algorithm that employs no signal model for the incoming signal. No intermediate mass black hole binary event is detected in this search. Consequently, we place upper limits on the merger rate density for a family of intermediate mass black hole binaries. In particular, we choose sources with total masses M=m1+m2ϵ[120,800] M and mass ratios q=m2/m1ϵ[0.1,1.0]. For the first time, this calculation is done using numerical relativity waveforms (which include higher modes) as models of the real emitted signal. We place a most stringent upper limit of 0.20 Gpc-3 yr-1 (in comoving units at the 90% confidence level) for equal-mass binaries with individual masses m1,2=100 M and dimensionless spins χ1,2=0.8 aligned with the orbital angular momentum of the binary. This improves by a factor of ∼5 that reported after Advanced LIGO's first observing run. © 2019 American Physical Society
    corecore