455 research outputs found
Some FRW Models of Accelerating Universe with Dark Energy
The paper deals with a spatially homogeneous and isotropic FRW space-time
filled with perfect fluid and dark energy components. The two sources are
assumed to interact minimally, and therefore their energy momentum tensors are
conserved separately. A special law of variation for the Hubble parameter
proposed by Berman (1983) has been utilized to solve the field equations. The
Berman's law yields two explicit forms of the scale factor governing the FRW
space-time and constant values of deceleration parameter. The role of dark
energy with variable equation of state parameter has been studied in detail in
the evolution of FRW universe. It has been found that dark energy dominates the
universe at the present epoch, which is consistent with the observations. The
physical behavior of the universe is discussed in detail.Comment: 10 pages, 5 figure
Zener transitions between dissipative Bloch bands. II: Current Response at Finite Temperature
We extend, to include the effects of finite temperature, our earlier study of
the interband dynamics of electrons with Markoffian dephasing under the
influence of uniform static electric fields. We use a simple two-band
tight-binding model and study the electric current response as a function of
field strength and the model parameters. In addition to the Esaki-Tsu peak,
near where the Bloch frequency equals the damping rate, we find current peaks
near the Zener resonances, at equally spaced values of the inverse electric
field. These become more prominenent and numerous with increasing bandwidth (in
units of the temperature, with other parameters fixed). As expected, they
broaden with increasing damping (dephasing).Comment: 5 pages, LateX, plus 5 postscript figure
Wrapped branes with fluxes in 8d gauged supergravity
We study the gravity dual of several wrapped D-brane configurations in
presence of 4-form RR fluxes partially piercing the unwrapped directions. We
present a systematic approach to obtain these solutions from those without
fluxes. We use D=8 gauged supergravity as a starting point to build up these
solutions. The configurations include (smeared) M2-branes at the tip of a G_2
cone on S^3 x S^3, D2-D6 branes with the latter wrapping a special Lagrangian
3-cycle of the complex deformed conifold and an holomorphic sphere in its
cotangent bundle T^*S^2, D3-branes at the tip of the generalized resolved
conifold, and others obtained by means of T duality and KK reduction. We
elaborate on the corresponding N=1 and N=2 field theories in 2+1 dimensions.Comment: 32 pages, LateX, v2: minor changes, reference added, v3: section
3.5.2 improve
Ac Stark Effects and Harmonic Generation in Periodic Potentials
The ac Stark effect can shift initially nonresonant minibands in
semiconductor superlattices into multiphoton resonances. This effect can result
in strongly enhanced generation of a particular desired harmonic of the driving
laser frequency, at isolated values of the amplitude.Comment: RevTeX, 10 pages (4 figures available on request), Preprint
UCSBTH-93-2
Theory of the Quantum Hall Smectic Phase II: Microscopic Theory
We present a microscopic derivation of the hydrodynamic theory of the Quantum
Hall smectic or stripe phase of a two-dimensional electron gas in a large
magnetic field. The effective action of the low energy is derived here from a
microscopic picture by integrating out high energy excitations with a scale of
the order the cyclotron energy.The remaining low-energy theory can be expressed
in terms of two canonically conjugate sets of degrees of freedom: the
displacement field, that describes the fluctuations of the shapes of the
stripes, and the local charge fluctuations on each stripe.Comment: 20 pages, RevTex, 3 figures, second part of cond-mat/0105448 New and
improved Introduction. Final version as it will appear in Physical Review
Molecular spintronics: Coherent spin transfer in coupled quantum dots
Time-resolved Faraday rotation has recently demonstrated coherent transfer of
electron spin between quantum dots coupled by conjugated molecules. Using a
transfer Hamiltonian ansatz for the coupled quantum dots, we calculate the
Faraday rotation signal as a function of the probe frequency in a pump-probe
setup using neutral quantum dots. Additionally, we study the signal of one
spin-polarized excess electron in the coupled dots. We show that, in both
cases, the Faraday rotation angle is determined by the spin transfer
probabilities and the Heisenberg spin exchange energy. By comparison of our
results with experimental data, we find that the transfer matrix element for
electrons in the conduction band is of order 0.08 eV and the spin transfer
probabilities are of order 10%.Comment: 13 pages, 6 figures; minor change
Generalized Holographic Dark Energy Model
In this paper, the model of holographic Chaplygin gas has been extended to
two general cases: first is the case of modified variable Chaplygin gas and
secondly of the viscous generalized Chaplygin gas. The dynamics of the model
are expressed by the use of scalar fields and the scalar potentials.Comment: 12 pages, to appear in Eur. Phys. J.
Connecting LHC, ILC, and Quintessence
If the cold dark matter consists of weakly interacting massive particles
(WIMPs), anticipated measurements of the WIMP properties at the Large Hadron
Collider (LHC) and the International Linear Collider (ILC) will provide an
unprecedented experimental probe of cosmology at temperatures of order 1 GeV.
It is worth emphasizing that the expected outcome of these tests may or may not
be consistent with the picture of standard cosmology. For example, in
kination-dominated quintessence models of dark energy, the dark matter relic
abundance can be significantly enhanced compared to that obtained from freeze
out in a radiation-dominated universe. Collider measurements then will
simultaneously probe both dark matter and dark energy. In this article, we
investigate the precision to which the LHC and ILC can determine the dark
matter and dark energy parameters under those circumstances. We use an
illustrative set of four benchmark points in minimal supergravity in analogy
with the four LCC benchmark points. The precision achievable together at the
LHC and ILC is sufficient to discover kination-dominated quintessence, under
the assumption that the WIMPs are the only dark matter component. The LHC and
ILC can thus play important roles as alternative probes of both dark matter and
dark energy.Comment: 38 pages, 9 figure
Non-minimal kinetic coupling and Chaplygin gas cosmology
In the frame of the scalar field model with non minimal kinetic coupling to
gravity, we study the cosmological solutions of the Chaplygin gas model of dark
energy. By appropriately restricting the potential, we found the scalar field,
the potential and coupling giving rise to the Chaplygin gas solution.
Extensions to the generalized and modified Chaplygin gas have been made.Comment: 18 pages, 2 figures. To appear in EPJ
Classical and Quantum Strings in compactified pp-waves and Godel type Universes
We consider Neveu-Schwarz pp-waves with spacetime supersymmetry. Upon
compactification of a spacelike direction, these backgrounds develop Closed
Null Curves (CNCs) and Closed Timelike Curves (CTCs), and are U-dual to
supersymmetric Godel type universes. We study classical and quantum strings in
this background, with emphasis on the strings winding around the compact
direction. We consider two types of strings: long strings stabilized by NS flux
and rotating strings which are stabilized against collapse by angular momentum.
Some of the latter strings wrap around CNCs and CTCs, and are thus a potential
source of pathology. We analyze the partition function, and in particular
discuss the effects of these string states. Although our results are not
conclusive, the partition function seems to be dramatically altered due to the
presence of CNCs and CTCs. We discuss some interpretations of our results,
including a possible sign of unitary violation.Comment: 42 pages, LaTeX, 2 figure
- …
