9 research outputs found
Nuclear shell-model calculations for 6Li and 14N with different NN potentials
Two ``phase-shift equivalent'' local NN potentials with different
parametrizations, Reid93 and NijmII, which were found to give nearly identical
results for the triton by Friar et al, are shown to yield remarkably similar
results for 6Li and 14N in a (0+2)hw no-core space shell-model calculation. The
results are compared with those for the widely used Hamada-Johnson hard-core
and the original Reid soft-core potentials, which have larger deuteron D-state
percentages. The strong correlation between the tensor strength and the nuclear
binding energy is confirmed. However, many nuclear-structure properties seem to
be rather insensitive to the details of the NN potential and, therefore, cannot
be used to test various NN potentials. (Submitted to Phys. Rev. C on Nov. 9,
1993 as a Brief Report.)Comment: 12 text pages and 1 figure (Figure available upon request),
University of Arizona Physics Preprint (Number not yet assigned
Microscopic calculation of proton capture reactions in mass 60-80 region and its astrophysical implications
Microscopic optical potentials obtained by folding the DDM3Y interaction with
the densities from Relativistic Mean Field approach have been utilized to
evaluate S-factors of low-energy reactions in mass 60-80 region
and to compare with experiments. The Lagrangian density FSU Gold has been
employed. Astrophysical rates for important proton capture reactions have been
calculated to study the behaviour of rapid proton nucleosynthesis for waiting
point nuclei with mass less than A=80
