9 research outputs found

    Nuclear shell-model calculations for 6Li and 14N with different NN potentials

    Full text link
    Two ``phase-shift equivalent'' local NN potentials with different parametrizations, Reid93 and NijmII, which were found to give nearly identical results for the triton by Friar et al, are shown to yield remarkably similar results for 6Li and 14N in a (0+2)hw no-core space shell-model calculation. The results are compared with those for the widely used Hamada-Johnson hard-core and the original Reid soft-core potentials, which have larger deuteron D-state percentages. The strong correlation between the tensor strength and the nuclear binding energy is confirmed. However, many nuclear-structure properties seem to be rather insensitive to the details of the NN potential and, therefore, cannot be used to test various NN potentials. (Submitted to Phys. Rev. C on Nov. 9, 1993 as a Brief Report.)Comment: 12 text pages and 1 figure (Figure available upon request), University of Arizona Physics Preprint (Number not yet assigned

    Microscopic calculation of proton capture reactions in mass 60-80 region and its astrophysical implications

    Full text link
    Microscopic optical potentials obtained by folding the DDM3Y interaction with the densities from Relativistic Mean Field approach have been utilized to evaluate S-factors of low-energy (p,γ)(p,\gamma) reactions in mass 60-80 region and to compare with experiments. The Lagrangian density FSU Gold has been employed. Astrophysical rates for important proton capture reactions have been calculated to study the behaviour of rapid proton nucleosynthesis for waiting point nuclei with mass less than A=80

    Semimicroscopic nucleon-nucleus spherical optical model for nuclei with A

    No full text
    corecore