35 research outputs found

    Progress towards ignition on the National Ignition Facility

    Full text link

    Adaptive mesh refinement in the fast lane

    Full text link

    Characterisation of ovine bone marrow-derived stromal cells (oBMSC) and evaluation of chondrogenically induced <i>micro</i>-pellets for cartilage tissue repair <i>in vivo</i>

    Full text link
    AbstractBackgroundBone marrow stromal cells (BMSC) show promise in cartilage repair, and sheep are the most common large animal pre-clinical model. The objective of this study was to characterize ovine BMSC (oBMSC) in vitro, and to evaluate the capacity of chondrogenic micro-pellets manufactured from oBMSC or ovine articular chondrocytes (oACh) to repair osteochondral defects in sheep.MethodsoBMSC were characterised for surface marker expression using flow cytometry and evaluated for tri-lineage differentiation. oBMSC micro-pellets were manufactured in a microwell platform, and chondrogenesis was compared at 2%, 5%, and 20% O2. The capacity of cartilage micro-pellets manufactured from oBMSC or oACh to repair osteochondral defects in adult sheep was evaluated in an 8-week pilot study. Expanded oBMSC were positive for CD44 and CD146 and negative for CD45.ResultsThe common adipogenic induction medium ingredient, 3-Isobutyl-1-methylxanthine (IBMX) was toxic to oBMSC, but adipogenesis could be restored by excluding IBMX from the medium. BMSC chondrogenesis was optimal in a 2% O2 atmosphere. Micro-pellets formed from oBMSC or oACh appeared morphologically similar, but hypertrophic genes were elevated in oBMSC micro-pellets. While oACh micro-pellets formed cartilage-like repair tissue in sheep, oBMSC micro-pellets did not.ConclusionThe sensitivity of oBMSC to IBMX highlights species-species differences between oBMSC and hBMSC. Micro-pellets manufactured from oBMSC were not effective in repairing osteochondral defects, while oACh micro-pellets enabled modest repair. While oBMSC can be driven to form cartilage-like tissue in vitro, their effective use in cartilage repair will require mitigation of hypertrophy.</jats:sec

    ABCG2 harboring the Gly482 mutation confers high-level resistance to various hydrophilic antifolates

    No full text
    ABCG2 is an ATP-binding cassette transporter that confers resistance to various chemotherapeutic agents. Recent studies have established that an Arg (wild-type) to Gly mutation at amino acid 482 in ABCG2 alters substrate specificity. Here, we explored the role of this G482 mutation in antifolate resistance using a clinically relevant 4-hour drug exposure. Stable transfectants overexpressing the mutant G482 transporter displayed 120-, 1,000-, and >6,250-fold resistance to the antifolates methotrexate, GW1843, and Tomudex, respectively, relative to parental human embryonic kidney cells. Moreover, although overexpressing equal transporter levels at the plasma membrane, G482-ABCG2 cells were 6-, 23-, and >521-fold more resistant to methotrexate, GW1843, and Tomudex, respectively, than R482-ABCG2 cells. In contrast, upon a continuous (72-hour) drug exposure, both the G482- and R482-ABCG2 cells lost almost all their antifolate resistance; this result was consistent with the inability of ABCG2 to extrude long-chain antifolate polyglutamates. Ko143, a specific and potent ABCG2 inhibitor reversed methotrexate resistance in both G482- and R482-ABCG2 cells. Consistently, whereas the pool of free methotrexate in parental human embryonic kidney cells was prominent after 4 hours of transport with 1 micromol/L [3H]methotrexate, in R482- and G482-ABCG2 cells, it was minimal. Furthermore, G482-ABCG2 cells contained marked decreases in the di- and triglutamate species of [3H]methotrexate at 4 hours of incubation with methotrexate and in the tetra- and pentaglutamates at 24 hours. These changes were not associated with any significant decrease in folylypoly-gamma-glutamate synthetase activity. These results provide the first evidence that the G482-ABCG2 mutation confers high-level resistance to various hydrophilic antifolates
    corecore