4,148 research outputs found
Recommended from our members
Collagen scaffolds as a tool for understanding the biological effect of silicates
Dietary silicon is essential in the maintenance of bone and cartilage. However, the mechanism by which silicon, in the form of silicates, triggers a biological response has never been uncovered. Here we demonstrate the incorporation of orthosilicic acid (Si(OH)4), the form of silicon in the body, within collagen scaffolds for use as an in vitro platform to identify key genes affected by silicates. Ice-templated collagen–silicate scaffolds, containing 0.21 wt% silicon, were validated by examining the mRNA levels for an array of genes in human osteoblasts and mesenchymal stromal cells (MSC) after 48 h in culture. Several novel genes, such as tumor necrosis factor alpha (TNF), were identified as having potential links to orthosilicic acid, verifying that collagen–silicate scaffolds are a versatile platform for identifying novel mechanisms in which silicates regulate musculoskeletal tissue.The authors gratefully acknowledge the financial support of the Gates Cambridge Trust , ERC Advanced Grant 320598 3D-E and from the National Institute for Health Research. RJ is supported by the Medical Research Council (Grant number MC_US_A090_0008/Unit Programme number U1059).This is the final published version. It first appeared at http://www.sciencedirect.com/science/article/pii/S0167577X15300203#
Likelihood inference for exponential-trawl processes
Integer-valued trawl processes are a class of serially correlated, stationary
and infinitely divisible processes that Ole E. Barndorff-Nielsen has been
working on in recent years. In this Chapter, we provide the first analysis of
likelihood inference for trawl processes by focusing on the so-called
exponential-trawl process, which is also a continuous time hidden Markov
process with countable state space. The core ideas include prediction
decomposition, filtering and smoothing, complete-data analysis and EM
algorithm. These can be easily scaled up to adapt to more general trawl
processes but with increasing computation efforts.Comment: 29 pages, 6 figures, forthcoming in: "A Fascinating Journey through
Probability, Statistics and Applications: In Honour of Ole E.
Barndorff-Nielsen's 80th Birthday", Springer, New Yor
Adapting tissue-engineered in vitro CNS models for high-throughput study of neurodegeneration
Neurodegenerative conditions remain difficult to treat, with the continuing failure to see therapeutic research successfully advance to clinical trials. One of the obstacles that must be overcome is to develop enhanced models of disease. Tissue engineering techniques enable us to create organised artificial central nervous system tissue that has the potential to improve the drug development process. This study presents a replicable model of neurodegenerative pathology through the use of engineered neural tissue co-cultures that can incorporate cells from various sources and allow degeneration and protection of neurons to be observed easily and measured, following exposure to neurotoxic compounds - okadaic acid and 1-methyl-4-phenylpyridinium. Furthermore, the technology has been miniaturised through development of a mould with 6 mm length that recreates the advantageous features of engineered neural tissue co-cultures at a scale suitable for commercial research and development. Integration of human-derived induced pluripotent stem cells aids more accurate modelling of human diseases, creating new possibilities for engineered neural tissue co-cultures and their use in drug screening
Homeostatic competition drives tumor growth and metastasis nucleation
We propose a mechanism for tumor growth emphasizing the role of homeostatic
regulation and tissue stability. We show that competition between surface and
bulk effects leads to the existence of a critical size that must be overcome by
metastases to reach macroscopic sizes. This property can qualitatively explain
the observed size distributions of metastases, while size-independent growth
rates cannot account for clinical and experimental data. In addition, it
potentially explains the observed preferential growth of metastases on tissue
surfaces and membranes such as the pleural and peritoneal layers, suggests a
mechanism underlying the seed and soil hypothesis introduced by Stephen Paget
in 1889 and yields realistic values for metastatic inefficiency. We propose a
number of key experiments to test these concepts. The homeostatic pressure as
introduced in this work could constitute a quantitative, experimentally
accessible measure for the metastatic potential of early malignant growths.Comment: 13 pages, 11 figures, to be published in the HFSP Journa
Simulating Reionization: Character and Observability
In recent years there has been considerable progress in our understanding of
the nature and properties of the reionization process. In particular, the
numerical simulations of this epoch have made a qualitative leap forward,
reaching sufficiently large scales to derive the characteristic scales of the
reionization process and thus allowing for realistic observational predictions.
Our group has recently performed the first such large-scale radiative transfer
simulations of reionization, run on top of state-of-the-art simulations of
early structure formation. This allowed us to make the first realistic
observational predictions about the Epoch of Reionization based on detailed
radiative transfer and structure formation simulations. We discuss the basic
features of reionization derived from our simulations and some recent results
on the observational implications for the high-redshift Ly-alpha sources.Comment: 3 pages, to appear in the Proceedings of First Stars III, Santa Fe,
July 2007, AIP Conference Serie
Doppler velocimetry of spin propagation in a two-dimensional electron gas
Controlling the flow of electrons by manipulation of their spin is a key to
the development of spin-based electronics. While recent demonstrations of
electrical-gate control in spin-transistor configurations show great promise,
operation at room temperature remains elusive. Further progress requires a
deeper understanding of the propagation of spin polarization, particularly in
the high mobility semiconductors used for devices. Here we report the
application of Doppler velocimetry to resolve the motion of spin-polarized
electrons in GaAs quantum wells driven by a drifting Fermi sea. We find that
the spin mobility tracks the high electron mobility precisely as a function of
T. However, we also observe that the coherent precession of spins driven by
spin-orbit interaction, which is essential for the operation of a broad class
of spin logic devices, breaks down at temperatures above 150 K for reasons that
are not understood theoretically
Echinoderms have bilateral tendencies
Echinoderms take many forms of symmetry. Pentameral symmetry is the major
form and the other forms are derived from it. However, the ancestors of
echinoderms, which originated from Cambrian period, were believed to be
bilaterians. Echinoderm larvae are bilateral during their early development.
During embryonic development of starfish and sea urchins, the position and the
developmental sequence of each arm are fixed, implying an auxological
anterior/posterior axis. Starfish also possess the Hox gene cluster, which
controls symmetrical development. Overall, echinoderms are thought to have a
bilateral developmental mechanism and process. In this article, we focused on
adult starfish behaviors to corroborate its bilateral tendency. We weighed
their central disk and each arm to measure the position of the center of
gravity. We then studied their turning-over behavior, crawling behavior and
fleeing behavior statistically to obtain the center of frequency of each
behavior. By joining the center of gravity and each center of frequency, we
obtained three behavioral symmetric planes. These behavioral bilateral
tendencies might be related to the A/P axis during the embryonic development of
the starfish. It is very likely that the adult starfish is, to some extent,
bilaterian because it displays some bilateral propensity and has a definite
behavioral symmetric plane. The remainder of bilateral symmetry may have
benefited echinoderms during their evolution from the Cambrian period to the
present
Emotional intelligence buffers the effect of physiological arousal on dishonesty
We studied the emotional processes that allow people to balance two competing desires: benefitting from dishonesty and keeping a positive self-image. We recorded physiological arousal (skin conductance and heart rate) during a computer card game in which participants could cheat and fail to report a certain card when presented on the screen to avoid losing their money. We found that higher skin conductance corresponded to lower cheating rates. Importantly, emotional intelligence regulated this effect; participants with high emotional intelligence were less affected by their physiological reactions than those with low emotional intelligence. As a result, they were more likely to profit from dishonesty. However, no interaction emerged between heart rate and emotional intelligence. We suggest that the ability to manage and control emotions can allow people to overcome the tension between doing right or wrong and license them to bend the rules
- …
