56 research outputs found

    The effects of rational and irrational coach team talks on the cognitive appraisal and achievement goal orientation of varsity football athletes

    Get PDF
    The effects of rational and irrational coach team talks on cognitive appraisal and achievement goal orientation were examined. During the half-time interval of a 60-minute football match, 25 male varsity football athletes (Mage = 20.20; SD ± 1.38 years) received a rational (n = 13) or an irrational (n = 12) team talk from a coach. Irrational and rational beliefs were measured before the football match. Task engagement, cognitive appraisal (challenge and threat), and achievement goal orientation (approach and avoidance) regarding second-half football performance were measured following team-talk delivery. Athletes in the rational team talk condition reported significantly lower threat appraisal and avoidance goal orientation than athletes in the irrational team talk condition. No significant between-condition differences emerged for challenge appraisal and approach goal orientation. For coaching practice, data suggest that communicating rational or irrational beliefs to football athletes through a half time team talk will influence appraisal and achievement goal orientation regarding upcoming performance. Keywords Rational emotive behaviour therapy, irrational beliefs, rational beliefs, appraisal, achievement goal

    Screening for inter-hospital differences in cesarean section rates in low-risk deliveries using administrative data: An initiative to improve the quality of care

    Get PDF
    BACKGROUND: Rising national cesarean section rates (CSRs) and unexplained inter-hospital differences in CSRs, led national and international bodies to select CSR as a quality indicator. Using hospital discharge abstracts, we aimed to document in Belgium (1) inter-hospital differences in CSRs among low risk deliveries, (2) a national upward CSR trend, (3) lack of better neonatal outcomes in hospitals with high CSRs, and (4) possible under-use of CS. METHODS: We defined a population of low risk deliveries (singleton, vertex, full-term, live born, 2499 g). Using multivariable logistic regression techniques, we provided degrees of evidence regarding the observed departure ([relative risk-1]*100) of each hospital (N = 107) from the national CSR and its trend. To determine a benchmark, we defined three CSR groups (high, average and low) and compared them regarding 1 minute Apgar scores and other neonatal endpoints. An anonymous feedback is provided to the hospitals, the College of Physicians (with voluntary disclosure of the outlying hospitals for quality improvement purposes) and to the policy makers. RESULTS: Compared with available information, the completeness and accuracy of the data, regarding the variables selected to determine our study population, showed adequate. Important inter-hospital differences were found. Departures ranged from -65% up to +75%, and 9 "high CSR" and 13 "low CSR" outlying hospitals were identified. We observed a national increasing trend of 1.019 (95%CI [1.015; 1.022]) per semester, adjusted for age groups. In the "high CSR" group 1 minute Apgar scores <4 were over-represented in the subgroup of vaginal deliveries, suggesting CSs not carried out for medical reasons. Under-use of CS was also observed. Given their questionable completeness, except Apgar scores, our neonatal results, showing a significant association of CS with adverse neonatal endpoints, are to be cautiously interpreted. Taking the available evidence into account, the "Average CSR" group seemed to be the best benchmark candidate. CONCLUSION: Rather than firm statements about quality of care, our results are to be considered a useful screening. The inter-hospital differences in CSR, the national CS upward trend, the indications of over-use and under-use, the geographically different obstetric patterns and the admission day-related concentration of deliveries, whether or not by CS, may trigger initiatives aiming at improving quality of care

    Evolution of a Bacterial Regulon Controlling Virulence and Mg2+ Homeostasis

    Get PDF
    Related organisms typically rely on orthologous regulatory proteins to respond to a given signal. However, the extent to which (or even if) the targets of shared regulatory proteins are maintained across species has remained largely unknown. This question is of particular significance in bacteria due to the widespread effects of horizontal gene transfer. Here, we address this question by investigating the regulons controlled by the DNA-binding PhoP protein, which governs virulence and Mg2+ homeostasis in several bacterial species. We establish that the ancestral PhoP protein directs largely different gene sets in ten analyzed species of the family Enterobacteriaceae, reflecting both regulation of species-specific targets and transcriptional rewiring of shared genes. The two targets directly activated by PhoP in all ten species (the most distant of which diverged >200 million years ago), and coding for the most conserved proteins are the phoPQ operon itself and the lipoprotein-encoding slyB gene, which decreases PhoP protein activity. The Mg2+-responsive PhoP protein dictates expression of Mg2+ transporters and of enzymes that modify Mg2+-binding sites in the cell envelope in most analyzed species. In contrast to the core PhoP regulon, which determines the amount of active PhoP and copes with the low Mg2+ stress, the variable members of the regulon contribute species-specific traits, a property shared with regulons controlled by dissimilar regulatory proteins and responding to different signals

    Evolution of a Bacterial Regulon Controlling Virulence and Mg2+ Homeostasis

    Get PDF
    Related organisms typically rely on orthologous regulatory proteins to respond to a given signal. However, the extent to which (or even if) the targets of shared regulatory proteins are maintained across species has remained largely unknown. This question is of particular significance in bacteria due to the widespread effects of horizontal gene transfer. Here, we address this question by investigating the regulons controlled by the DNA-binding PhoP protein, which governs virulence and Mg2+ homeostasis in several bacterial species. We establish that the ancestral PhoP protein directs largely different gene sets in ten analyzed species of the family Enterobacteriaceae, reflecting both regulation of species-specific targets and transcriptional rewiring of shared genes. The two targets directly activated by PhoP in all ten species (the most distant of which diverged >200 million years ago), and coding for the most conserved proteins are the phoPQ operon itself and the lipoprotein-encoding slyB gene, which decreases PhoP protein activity. The Mg2+-responsive PhoP protein dictates expression of Mg2+ transporters and of enzymes that modify Mg2+-binding sites in the cell envelope in most analyzed species. In contrast to the core PhoP regulon, which determines the amount of active PhoP and copes with the low Mg2+ stress, the variable members of the regulon contribute species-specific traits, a property shared with regulons controlled by dissimilar regulatory proteins and responding to different signals

    Cholera- and Anthrax-Like Toxins Are among Several New ADP-Ribosyltransferases

    Get PDF
    Chelt, a cholera-like toxin from Vibrio cholerae, and Certhrax, an anthrax-like toxin from Bacillus cereus, are among six new bacterial protein toxins we identified and characterized using in silico and cell-based techniques. We also uncovered medically relevant toxins from Mycobacterium avium and Enterococcus faecalis. We found agriculturally relevant toxins in Photorhabdus luminescens and Vibrio splendidus. These toxins belong to the ADP-ribosyltransferase family that has conserved structure despite low sequence identity. Therefore, our search for new toxins combined fold recognition with rules for filtering sequences – including a primary sequence pattern – to reduce reliance on sequence identity and identify toxins using structure. We used computers to build models and analyzed each new toxin to understand features including: structure, secretion, cell entry, activation, NAD+ substrate binding, intracellular target binding and the reaction mechanism. We confirmed activity using a yeast growth test. In this era where an expanding protein structure library complements abundant protein sequence data – and we need high-throughput validation – our approach provides insight into the newest toxin ADP-ribosyltransferases
    corecore