77 research outputs found
Analysis of the cell surface layer ultrastructure of the oral pathogen Tannerella forsythia
The Gram-negative oral pathogen Tannerella forsythia is decorated with a 2D crystalline surface (S-) layer, with two different S-layer glycoprotein species being present. Prompted by the predicted virulence potential of the S-layer, this study focused on the analysis of the arrangement of the individual S-layer glycoproteins by a combination of microscopic, genetic, and biochemical analyses. The two S-layer genes are transcribed into mRNA and expressed into protein in equal amounts. The S-layer was investigated on intact bacterial cells by transmission electron microscopy, by immune fluorescence microscopy, and by atomic force microscopy. The analyses of wild-type cells revealed a distinct square S-layer lattice with an overall lattice constant of 10.1 ± 0.7 nm. In contrast, a blurred lattice with a lattice constant of 9.0 nm was found on S-layer single-mutant cells. This together with in vitro self-assembly studies using purified (glyco)protein species indicated their increased structural flexibility after self-assembly and/or impaired self-assembly capability. In conjunction with TEM analyses of thin-sectioned cells, this study demonstrates the unusual case that two S-layer glycoproteins are co-assembled into a single S-layer. Additionally, flagella and pilus-like structures were observed on T. forsythia cells, which might impact the pathogenicity of this bacterium
Associative representational plasticity in the auditory cortex: resolving conceptual and empirical problems
Observation of the narrow state X(3872)-\u3e J/psi pi(+)pi(-) in (p)over-barp collisions at root s=1.96 TeV
We report the observation of a narrow state decaying into J/psipi(+)pi(-) and produced in 220 pb(-1) of (p) over barp collisions at roots=1.96 TeV in the CDF II experiment. We observe 730+/-90 decays. The mass is measured to be 3871.3+/-0.7(stat)+/-0.4(syst) MeV/c(2), with an observed width consistent with the detector resolution. This is in agreement with the recent observation by the Belle Collaboration of the X(3872) meson
- …
