935 research outputs found

    Motivated proteins: a web application for studying small three-dimensional protein motifs

    Get PDF
    <b>BACKGROUND:</b> Small loop-shaped motifs are common constituents of the three-dimensional structure of proteins. Typically they comprise between three and seven amino acid residues, and are defined by a combination of dihedral angles and hydrogen bonding partners. The most abundant of these are alphabeta-motifs, asx-motifs, asx-turns, beta-bulges, beta-bulge loops, beta-turns, nests, niches, Schellmann loops, ST-motifs, ST-staples and ST-turns.We have constructed a database of such motifs from a range of high-quality protein structures and built a web application as a visual interface to this. <b>DESCRIPTION:</b> The web application, Motivated Proteins, provides access to these 12 motifs (with 48 sub-categories) in a database of over 400 representative proteins. Queries can be made for specific categories or sub-categories of motif, motifs in the vicinity of ligands, motifs which include part of an enzyme active site, overlapping motifs, or motifs which include a particular amino acid sequence. Individual proteins can be specified, or, where appropriate, motifs for all proteins listed. The results of queries are presented in textual form as an (X)HTML table, and may be saved as parsable plain text or XML. Motifs can be viewed and manipulated either individually or in the context of the protein in the Jmol applet structural viewer. Cartoons of the motifs imposed on a linear representation of protein secondary structure are also provided. Summary information for the motifs is available, as are histograms of amino acid distribution, and graphs of dihedral angles at individual positions in the motifs. <b>CONCLUSION:</b> Motivated Proteins is a publicly and freely accessible web application that enables protein scientists to study small three-dimensional motifs without requiring knowledge of either Structured Query Language or the underlying database schem

    The EIIIA domain from astrocyte-derived fibronectin mediates proliferation of oligodendrocyte progenitor cells following CNS demyelination.

    Get PDF
    Central nervous system remyelination by oligodendrocyte progenitor cells (OPCs) ultimately fails in the majority of multiple sclerosis (MS) lesions. Remyelination benefits from transient expression of factors that promote migration and proliferation of OPCs, which may include fibronectin (Fn). Fn is present in demyelinated lesions in two major forms; plasma Fn (pFn), deposited following blood-brain barrier disruption, and cellular Fn, synthesized by resident glial cells and containing alternatively spliced domains EIIIA and EIIIB. Here, we investigated the distinctive roles that astrocyte-derived Fn (aFn) and pFn play in remyelination. We used an inducible Cre-lox recombination strategy to selectively remove pFn, aFn or both from mice, and examined the impact on remyelination of toxin-induced demyelinated lesions of spinal cord white matter. This approach revealed that astrocytes are a major source of Fn in demyelinated lesions. Furthermore, following aFn conditional knockout, the number of OPCs recruited to the demyelinated lesion decreased significantly, whereas OPC numbers were unaltered following pFn conditional knockout. However, remyelination completed normally following conditional knockout of aFn and pFn. Both the EIIIA and EIIIB domains of aFn were expressed following demyelination, and in vitro assays demonstrated that the EIIIA domain of aFn mediates proliferation of OPCs, but not migration. Therefore, although the EIIIA domain from aFn mediates OPC proliferation, aFn is not essential for successful remyelination. Since previous findings indicated that astrocyte-derived Fn aggregates in chronic MS lesions inhibit remyelination, aFn removal may benefit therapeutic strategies to promote remyelination in MS.JMJS is recipient of a Junior Scientific Masterclass MD/PhD fellowship from the University Medical Center Groningen. This work was supported by grants from the Netherlands Organization of Scientific Research (NWO, WB, VIDI and Aspasia), the Dutch MS Research Foundation (‘Stichting MS Research’, WB, JMJS, DH), the UK MS Society (CZ, RJMF), and the Research School of Behavioral and Cognitive Neurosciences (BCN, JMJS). Parts of this study were performed at the UMCG Microscopy and Imaging Center (UMIC), which is supported by NWO grants 40-00506-98-9021 and 175-010-2009-023.This is the final version of the article. It was first published by Wiley at http://dx.doi.org/10.1002/glia.2274

    Baseline Functioning and Stress Reactivity in Maltreating Parents and At-Risk Adults: Review and Meta-Analyses of Autonomic Nervous System Studies.

    Get PDF
    We reviewed and meta-analyzed 10 studies ( N = 492) that examined the association between (risk for) child maltreatment perpetration and basal autonomic activity, and 10 studies ( N = 471) that examined the association between (risk for) child maltreatment and autonomic stress reactivity. We hypothesized that maltreating parents/at-risk adults would show higher basal levels of heart rate (HR) and skin conductance (SC) and lower levels of HR variability (HRV) and would show greater HR and SC stress reactivity, but blunted HRV reactivity. A narrative review showed that evidence from significance testing within and across studies was mixed. The first set of meta-analyses revealed that (risk for) child maltreatment was associated with higher HR baseline activity ( g = 0.24), a possible indication of allostatic load. The second set of meta-analyses yielded no differences in autonomic stress reactivity between maltreating/at-risk participants and nonmaltreating/low-risk comparison groups. Cumulative meta-analyses showed that positive effects for sympathetic stress reactivity as a risk factor for child maltreatment were found in a few early studies, whereas each subsequently aggregated study reduced the combined effect size to a null effect, an indication of the winner's curse. Most studies were underpowered. Future directions for research are suggested.The study was supported by the Netherlands Organization for Scientific Research (LRAA: VIDI grant; MHvIJ: NWO SPINOZA prize; MJBK: VICI grant), and the Wellcome Trust (WT103343MA).This is the final version of the article. It first appeared from SAGE Publications via http://dx.doi.org/10.1177/1077559516659937

    Visual, Motor and Attentional Influences on Proprioceptive Contributions to Perception of Hand Path Rectilinearity during Reaching

    Get PDF
    We examined how proprioceptive contributions to perception of hand path straightness are influenced by visual, motor and attentional sources of performance variability during horizontal planar reaching. Subjects held the handle of a robot that constrained goal-directed movements of the hand to the paths of controlled curvature. Subjects attempted to detect the presence of hand path curvature during both active (subject driven) and passive (robot driven) movements that either required active muscle force production or not. Subjects were less able to discriminate curved from straight paths when actively reaching for a target versus when the robot moved their hand through the same curved paths. This effect was especially evident during robot-driven movements requiring concurrent activation of lengthening but not shortening muscles. Subjects were less likely to report curvature and were more variable in reporting when movements appeared straight in a novel “visual channel” condition previously shown to block adaptive updating of motor commands in response to deviations from a straight-line hand path. Similarly, compromised performance was obtained when subjects simultaneously performed a distracting secondary task (key pressing with the contralateral hand). The effects compounded when these last two treatments were combined. It is concluded that environmental, intrinsic and attentional factors all impact the ability to detect deviations from a rectilinear hand path during goal-directed movement by decreasing proprioceptive contributions to limb state estimation. In contrast, response variability increased only in experimental conditions thought to impose additional attentional demands on the observer. Implications of these results for perception and other sensorimotor behaviors are discussed

    Magnetism, FeS colloids, and Origins of Life

    Full text link
    A number of features of living systems: reversible interactions and weak bonds underlying motor-dynamics; gel-sol transitions; cellular connected fractal organization; asymmetry in interactions and organization; quantum coherent phenomena; to name some, can have a natural accounting via physicalphysical interactions, which we therefore seek to incorporate by expanding the horizons of `chemistry-only' approaches to the origins of life. It is suggested that the magnetic 'face' of the minerals from the inorganic world, recognized to have played a pivotal role in initiating Life, may throw light on some of these issues. A magnetic environment in the form of rocks in the Hadean Ocean could have enabled the accretion and therefore an ordered confinement of super-paramagnetic colloids within a structured phase. A moderate H-field can help magnetic nano-particles to not only overcome thermal fluctuations but also harness them. Such controlled dynamics brings in the possibility of accessing quantum effects, which together with frustrations in magnetic ordering and hysteresis (a natural mechanism for a primitive memory) could throw light on the birth of biological information which, as Abel argues, requires a combination of order and complexity. This scenario gains strength from observations of scale-free framboidal forms of the greigite mineral, with a magnetic basis of assembly. And greigite's metabolic potential plays a key role in the mound scenario of Russell and coworkers-an expansion of which is suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed Krishnaswami Alladi, Springer 201

    Adaptive tuning functions arise from visual observation of past movement

    Get PDF
    Visual observation of movement plays a key role in action. For example, tennis players have little time to react to the ball, but still need to prepare the appropriate stroke. Therefore, it might be useful to use visual information about the ball trajectory to recall a specific motor memory. Past visual observation of movement (as well as passive and active arm movement) affects the learning and recall of motor memories. Moreover, when passive or active, these past contextual movements exhibit generalization (or tuning) across movement directions. Here we extend this work, examining whether visual motion also exhibits similar generalization across movement directions and whether such generalization functions can explain patterns of interference. Both the adaptation movement and contextual movement exhibited generalization beyond the training direction, with the visual contextual motion exhibiting much broader tuning. A second experiment demonstrated that this pattern was consistent with the results of an interference experiment where opposing force fields were associated with two separate visual movements. Overall, our study shows that visual contextual motion exhibits much broader (and shallower) tuning functions than previously seen for either passive or active movements, demonstrating that the tuning characteristics of past motion are highly dependent on their sensory modality

    Sharing Space: The Presence of Other Bodies Extends the Space Judged as Near

    Get PDF
    Background: As social animals we share the space with other people. It is known that perceived extension of the peripersonal space (the reaching space) is affected by the implicit representation of our own and other's action potentialities. Our issue concerns whether the co-presence of a body in the scene influences our extrapersonal space (beyond reaching distance) categorization. Methodology/Principal Findings: We investigated, through 3D virtual scenes of a realistic environment, whether egocentric spatial categorization can be influenced by the presence of another human body (Exp. 1) and whether the effect is due to her action potentialities or simply to her human-like morphology (Exp. 2). Subjects were asked to judge the location ("Near" or "Far") of a target object located at different distances from their egocentric perspective. In Exp. 1, the judgment was given either in presence of a virtual avatar (Self-with-Other), or a non-corporeal object (Self-with-Object) or nothing (Self). In Exp. 2, the Self condition was replaced by a Self-with-Dummy condition, in which an inanimate body (a wooden dummy) was present. Mean Judgment Transition Thresholds (JTTs) were calculated for each subject in each experimental condition. Self-with-Other condition induced a significant extension of the space judged as "Near" as compared to both the Selfwith- Object condition and the Self condition. Such extension was observed also in Exp. 2 in the Self-with-Dummy condition. Results suggest that the presence of others impacts on our perception of extrapersonal space. This effect holds also when the other is a human-like wooden dummy, suggesting that structural and morphological shapes resembling human bodies are sufficient conditions for the effect to occur. Conclusions: The observed extension of the portion of space judged as near could represent a wider portion of "accessible" space, thus an advantage in the struggle to survive in presence of other potential competing individuals

    A systematic review of protocol studies on conceptual design cognition

    Get PDF
    This paper reports the first systematic review and synthesis of protocol studies on conceptual design cognition. 47 protocol studies from the domains of architectural design, engineering design, and product de-sign engineering were reviewed towards answering the following re-search question: What is our current understanding of the cognitive processes involved in conceptual design tasks carried out by individual designers? Studies were found to reflect three viewpoints on the cognitive nature of designing, namely: design as search; design as ex-ploration; and design activities. Synthesising the findings of individual studies yielded a classification of cognitive processes involved in con-ceptual design tasks, described in different terms across different viewpoints. Towards a common terminology, these processes are posi-tioned within the cognitive psychology literature, revealing seven basic types of process that appear to be fundamental to designing across all viewpoints: memory (working and long term); visual perception; men-tal imagery; attention; semantic association; cognitive control; and higher-order processes, e.g. analysis and reasoning. The development of common cognitive models of conceptual design, grounded in a sci-entifically rigorous understanding of design cognition, is identified as an avenue for future research

    Lectin-like bacteriocins from pseudomonas spp. utilise D-rhamnose containing lipopolysaccharide as a cellular receptor

    Get PDF
    Lectin-like bacteriocins consist of tandem monocot mannose-binding domains and display a genus-specific killing activity. Here we show that pyocin L1, a novel member of this family from Pseudomonas aeruginosa, targets susceptible strains of this species through recognition of the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide that is predominantly a homopolymer of d-rhamnose. Structural and biophysical analyses show that recognition of CPA occurs through the C-terminal carbohydrate-binding domain of pyocin L1 and that this interaction is a prerequisite for bactericidal activity. Further to this, we show that the previously described lectin-like bacteriocin putidacin L1 shows a similar carbohydrate-binding specificity, indicating that oligosaccharides containing d-rhamnose and not d-mannose, as was previously thought, are the physiologically relevant ligands for this group of bacteriocins. The widespread inclusion of d-rhamnose in the lipopolysaccharide of members of the genus Pseudomonas explains the unusual genus-specific activity of the lectin-like bacteriocins
    corecore