4,632 research outputs found
Neutron halos in heavy nuclei -- relativistic mean field approach
Assuming a~simple spherical relativistic mean field model of the nucleus, we
estimate the width of the antiproton--neutron annihilation () and the
width of antiproton--proton () annihilation, in an antiprotonic atom
system. This allows us to determine the halo factor , which is then
discussed in the context of experimental data obtained in measurements recently
done on LEAR utility at CERN. Another quantity which characterizes the
deviation of the average nuclear densities ratio from the corresponding ratio
of the homogeneous densities is introduced too. It was shown that it is also a
good indicator of the neutron halo. The results are compared to experimental
data as well as to the data of the simple liquid droplet model of the nuclear
densities. The single particle structure of the nuclear density tail is
discusssed also.Comment: revtex, 12 pages + 6 postscript figure
Physical Response Functions of Strongly Coupled Massive Quantum Liquids
We study physical properties of strongly coupled massive quantum liquids from
their spectral functions using the AdS/CFT correspondence. The generic model
that we consider is dense, heavy fundamental matter coupled to SU(N_c) super
Yang-Mills theory at finite temperature above the deconfinement phase
transition but below the scale set by the baryon number density. In this setup,
we study the current-current correlators of the baryon number density using new
techniques that employ a scaling behavior in the dual geometry. Our results,
the AC conductivity, the quasi-particle spectrum and the Drude-limit parameters
like the relaxation time are simple temperature-independent expressions that
depend only on the mass-squared to density ratio and display a crossover
between a baryon- and meson-dominated regime. We concentrated on the
(2+1)-dimensional defect case, but in principle our results can also be
generalized straightforwardly to other cases.Comment: 21 pages, 10 figures, extra paragraph and figure are added in
response to referee's comment
Magnetic effects in a holographic Fermi-like liquid
We explore the magnetic properties of the Fermi-like liquid represented by
the D3-D7' system. The system exhibits interesting magnetic properties such as
ferromagnetism and an anomalous Hall effect, which are due to the Chern-Simons
term in the effective gravitational action. We investigate the spectrum of
quasi-normal modes in the presence of a magnetic field and show that the
magnetic field mitigates the instability towards a striped phase. In addition,
we find a critical magnetic field above which the zero sound mode becomes
massive.Comment: 18 pages, 15 figure
Meson Thermalization in Various Dimensions
In gauge/gravity duality framework the thermalization of mesons in strongly
coupled (p+1)-dimensional gauge theories is studied for a general Dp-Dq system,
q>=p, using the flavour Dq-brane as a probe. Thermalization corresponds to the
horizon formation on the flavour Dq-brane. We calculate the thermalization
time-scale due to a time-dependent change in the baryon number chemical
potential, baryon injection in the field theory. We observe that for such a
general system it has a universal behaviour depending only on the t'Hooft
coupling constant and the two parameters which describe how we inject baryons
into the system. We show that this universal behaviour is independent of the
details of the theory whether it is conformal and/or supersymmetric.Comment: 26 pages, 2 figure
Carboxyhaemoglobin levels and their determinants in older British men
Background: Although there has been concern about the levels of carbon monoxide exposure, particularly among older people, little is known about COHb levels and their determinants in the general population. We examined these issues in a study of older British men.Methods: Cross-sectional study of 4252 men aged 60-79 years selected from one socially representative general practice in each of 24 British towns and who attended for examination between 1998 and 2000. Blood samples were measured for COHb and information on social, household and individual factors assessed by questionnaire. Analyses were based on 3603 men measured in or close to (< 10 miles) their place of residence.Results: The COHb distribution was positively skewed. Geometric mean COHb level was 0.46% and the median 0.50%; 9.2% of men had a COHb level of 2.5% or more and 0.1% of subjects had a level of 7.5% or more. Factors which were independently related to mean COHb level included season (highest in autumn and winter), region (highest in Northern England), gas cooking (slight increase) and central heating (slight decrease) and active smoking, the strongest determinant. Mean COHb levels were more than ten times greater in men smoking more than 20 cigarettes a day (3.29%) compared with non-smokers (0.32%); almost all subjects with COHb levels of 2.5% and above were smokers (93%). Pipe and cigar smoking was associated with more modest increases in COHb level. Passive cigarette smoking exposure had no independent association with COHb after adjustment for other factors. Active smoking accounted for 41% of variance in COHb level and all factors together for 47%.Conclusion: An appreciable proportion of men have COHb levels of 2.5% or more at which symptomatic effects may occur, though very high levels are uncommon. The results confirm that smoking (particularly cigarette smoking) is the dominant influence on COHb levels
Identification of a protein encoded in the EB-viral open reading frame BMRF2
Using monospecific rabbit sera against a peptide derived from a potential antigenic region of the Epstein-Barr viral amino acid sequence encoded in the open reading frame BMRF2 we could identify a protein-complex of 53/55 kDa in chemically induced B95-8, P3HR1 and Raji cell lines. This protein could be shown to be membrane-associated, as predicted by previous computer analysis of the secondary structure and hydrophilicity pattern, and may be a member of EBV-induced membrane proteins in lytically infected cells
Nonlinear Hydrodynamics from Flow of Retarded Green's Function
We study the radial flow of retarded Green's function of energy-momentum
tensor and -current of dual gauge theory in presence of generic higher
derivative terms in bulk Lagrangian. These are first order non-linear Riccati
equations. We solve these flow equations analytically and obtain second order
transport coefficients of boundary plasma. This way of computing transport
coefficients has an advantage over usual Kubo approach. The non-linear equation
turns out to be a linear first order equation when we study the Green's
function perturbatively in momentum. We consider several examples including
term and generic four derivative terms in bulk. We also study the flow
equations for -charged black holes and obtain exact expressions for second
order transport coefficients for dual plasma in presence of arbitrary chemical
potentials. Finally we obtain higher derivative corrections to second order
transport coefficients of boundary theory dual to five dimensional gauge
supergravity.Comment: Version 2, reference added, typos correcte
Nanomechanical Detection of Itinerant Electron Spin Flip
Spin is an intrinsically quantum property, characterized by angular momentum.
A change in the spin state is equivalent to a change in the angular momentum or
mechanical torque. This spin-induced torque has been invoked as the intrinsic
mechanism in experiments ranging from the measurements of angular momentum of
photons g-factor of metals and magnetic resonance to the magnetization reversal
in magnetic multi-layers A spin-polarized current introduced into a nonmagnetic
nanowire produces a torque associated with the itinerant electron spin flip.
Here, we report direct measurement of this mechanical torque and itinerant
electron spin polarization in an integrated nanoscale torsion oscillator, which
could yield new information on the itinerancy of the d-band electrons. The
unprecedented torque sensitivity of 10^{-22} N m/ \sqrt{Hz} may enable
applications for spintronics, precision measurements of CP-violating forces,
untwisting of DNA and torque generating molecules.Comment: 14 pages, 4 figures. visit http://nano.bu.edu/ for related paper
Electromyographic Analysis of the Shoulder Girdle Musculature during External Rotation Exercises
Background: Implementation of overhead activity, a key component of many professional sports, requires an effective and balanced activation of shoulder girdle muscles particularly during forceful external rotation motions.
Purpose: The study aimed to identify activation strategies of 16 shoulder girdle muscles/muscle segments during common shoulder external rotational exercises.
Study Design: Cross-Sectional Study
Method: EMG was recorded in 30 healthy subjects from 16 shoulder girdle muscles/muscle segments (surface electrode: anterior, middle and posterior deltoid, upper, middle and lower trapezius, serratus anterior, teres major, upper and lower latissimus dorsi, upper and lower pectoralis major; fine wire electrodes: supraspinatus, infraspinatus, subscapularis and rhomboid major) using a telemetric EMG system. Five external rotation (ER) exercises (standing ER at 0o and 90o of abduction, and with under-arm towel roll, prone ER at 90o of abduction, side-lying ER with under-arm towel) were studied. Exercise EMG amplitudes were normalised to EMGmax (EMG at maximal ER force in a standard position). Univariate analysis of variance (ANOVA) and post-hoc analysis applied on EMG activity of each muscle to assess the main effect of exercise condition.
Results: Muscular activity differed significantly among the ER exercises (P<0.05 – P<0.001). The highest activation for anterior and middle deltoid, supraspinatus, upper trapezius, and serratus anterior occurred during standing ER at 90o of abduction; for posterior deltoid, middle trapezius, and rhomboid during side-lying ER at 0° of abduction; for lower trapezius, upper and lower latissimus dorsi, subscapularis, and teres major during prone ER at 90o of abduction, and for clavicular and sternal part of pectoralis major during standing ER with Under-Arm Towel.
Conclusion: Key glenohumeral and scapular muscles can be optimally activated during the specific ER exercises particularly in positions that stimulate athletic overhead motions.
Clinical Relevance: These results enable sport medicine professionals to target specific muscles during shoulder rehabilitation protocols while minimising the effect of others, providing a foundation for optimal evidence-based exercise prescription. They also provide information for tailored muscle training and injury prevention in overhead sports
Holographic phase diagram of quark-gluon plasma formed in heavy-ions collisions
The phase diagram of quark gluon plasma (QGP) formed at a very early stage
just after the heavy ion collision is obtained by using a holographic dual
model for the heavy ion collision. In this dual model colliding ions are
described by the charged shock gravitational waves. Points on the phase diagram
correspond to the QGP or hadronic matter with given temperatures and chemical
potentials. The phase of QGP in dual terms is related to the case when the
collision of shock waves leads to formation of trapped surface. Hadronic matter
and other confined states correspond to the absence of trapped surface after
collision.
Multiplicity of the ion collision process is estimated in the dual language
as area of the trapped surface. We show that a non-zero chemical potential
reduces the multiplicity. To plot the phase diagram we use two different dual
models of colliding ions, the point and the wall shock waves, and find
qualitative agreement of the results.Comment: 33 pages, 14 figures, typos correcte
- …
