4,632 research outputs found

    Neutron halos in heavy nuclei -- relativistic mean field approach

    Get PDF
    Assuming a~simple spherical relativistic mean field model of the nucleus, we estimate the width of the antiproton--neutron annihilation (Γn\Gamma_n) and the width of antiproton--proton (Γp\Gamma_p) annihilation, in an antiprotonic atom system. This allows us to determine the halo factor ff, which is then discussed in the context of experimental data obtained in measurements recently done on LEAR utility at CERN. Another quantity which characterizes the deviation of the average nuclear densities ratio from the corresponding ratio of the homogeneous densities is introduced too. It was shown that it is also a good indicator of the neutron halo. The results are compared to experimental data as well as to the data of the simple liquid droplet model of the nuclear densities. The single particle structure of the nuclear density tail is discusssed also.Comment: revtex, 12 pages + 6 postscript figure

    Physical Response Functions of Strongly Coupled Massive Quantum Liquids

    Full text link
    We study physical properties of strongly coupled massive quantum liquids from their spectral functions using the AdS/CFT correspondence. The generic model that we consider is dense, heavy fundamental matter coupled to SU(N_c) super Yang-Mills theory at finite temperature above the deconfinement phase transition but below the scale set by the baryon number density. In this setup, we study the current-current correlators of the baryon number density using new techniques that employ a scaling behavior in the dual geometry. Our results, the AC conductivity, the quasi-particle spectrum and the Drude-limit parameters like the relaxation time are simple temperature-independent expressions that depend only on the mass-squared to density ratio and display a crossover between a baryon- and meson-dominated regime. We concentrated on the (2+1)-dimensional defect case, but in principle our results can also be generalized straightforwardly to other cases.Comment: 21 pages, 10 figures, extra paragraph and figure are added in response to referee's comment

    Magnetic effects in a holographic Fermi-like liquid

    Full text link
    We explore the magnetic properties of the Fermi-like liquid represented by the D3-D7' system. The system exhibits interesting magnetic properties such as ferromagnetism and an anomalous Hall effect, which are due to the Chern-Simons term in the effective gravitational action. We investigate the spectrum of quasi-normal modes in the presence of a magnetic field and show that the magnetic field mitigates the instability towards a striped phase. In addition, we find a critical magnetic field above which the zero sound mode becomes massive.Comment: 18 pages, 15 figure

    Meson Thermalization in Various Dimensions

    Full text link
    In gauge/gravity duality framework the thermalization of mesons in strongly coupled (p+1)-dimensional gauge theories is studied for a general Dp-Dq system, q>=p, using the flavour Dq-brane as a probe. Thermalization corresponds to the horizon formation on the flavour Dq-brane. We calculate the thermalization time-scale due to a time-dependent change in the baryon number chemical potential, baryon injection in the field theory. We observe that for such a general system it has a universal behaviour depending only on the t'Hooft coupling constant and the two parameters which describe how we inject baryons into the system. We show that this universal behaviour is independent of the details of the theory whether it is conformal and/or supersymmetric.Comment: 26 pages, 2 figure

    Carboxyhaemoglobin levels and their determinants in older British men

    Get PDF
    Background: Although there has been concern about the levels of carbon monoxide exposure, particularly among older people, little is known about COHb levels and their determinants in the general population. We examined these issues in a study of older British men.Methods: Cross-sectional study of 4252 men aged 60-79 years selected from one socially representative general practice in each of 24 British towns and who attended for examination between 1998 and 2000. Blood samples were measured for COHb and information on social, household and individual factors assessed by questionnaire. Analyses were based on 3603 men measured in or close to (< 10 miles) their place of residence.Results: The COHb distribution was positively skewed. Geometric mean COHb level was 0.46% and the median 0.50%; 9.2% of men had a COHb level of 2.5% or more and 0.1% of subjects had a level of 7.5% or more. Factors which were independently related to mean COHb level included season (highest in autumn and winter), region (highest in Northern England), gas cooking (slight increase) and central heating (slight decrease) and active smoking, the strongest determinant. Mean COHb levels were more than ten times greater in men smoking more than 20 cigarettes a day (3.29%) compared with non-smokers (0.32%); almost all subjects with COHb levels of 2.5% and above were smokers (93%). Pipe and cigar smoking was associated with more modest increases in COHb level. Passive cigarette smoking exposure had no independent association with COHb after adjustment for other factors. Active smoking accounted for 41% of variance in COHb level and all factors together for 47%.Conclusion: An appreciable proportion of men have COHb levels of 2.5% or more at which symptomatic effects may occur, though very high levels are uncommon. The results confirm that smoking (particularly cigarette smoking) is the dominant influence on COHb levels

    Identification of a protein encoded in the EB-viral open reading frame BMRF2

    Get PDF
    Using monospecific rabbit sera against a peptide derived from a potential antigenic region of the Epstein-Barr viral amino acid sequence encoded in the open reading frame BMRF2 we could identify a protein-complex of 53/55 kDa in chemically induced B95-8, P3HR1 and Raji cell lines. This protein could be shown to be membrane-associated, as predicted by previous computer analysis of the secondary structure and hydrophilicity pattern, and may be a member of EBV-induced membrane proteins in lytically infected cells

    Nonlinear Hydrodynamics from Flow of Retarded Green's Function

    Full text link
    We study the radial flow of retarded Green's function of energy-momentum tensor and RR-current of dual gauge theory in presence of generic higher derivative terms in bulk Lagrangian. These are first order non-linear Riccati equations. We solve these flow equations analytically and obtain second order transport coefficients of boundary plasma. This way of computing transport coefficients has an advantage over usual Kubo approach. The non-linear equation turns out to be a linear first order equation when we study the Green's function perturbatively in momentum. We consider several examples including Weyl4Weyl^4 term and generic four derivative terms in bulk. We also study the flow equations for RR-charged black holes and obtain exact expressions for second order transport coefficients for dual plasma in presence of arbitrary chemical potentials. Finally we obtain higher derivative corrections to second order transport coefficients of boundary theory dual to five dimensional gauge supergravity.Comment: Version 2, reference added, typos correcte

    Nanomechanical Detection of Itinerant Electron Spin Flip

    Full text link
    Spin is an intrinsically quantum property, characterized by angular momentum. A change in the spin state is equivalent to a change in the angular momentum or mechanical torque. This spin-induced torque has been invoked as the intrinsic mechanism in experiments ranging from the measurements of angular momentum of photons g-factor of metals and magnetic resonance to the magnetization reversal in magnetic multi-layers A spin-polarized current introduced into a nonmagnetic nanowire produces a torque associated with the itinerant electron spin flip. Here, we report direct measurement of this mechanical torque and itinerant electron spin polarization in an integrated nanoscale torsion oscillator, which could yield new information on the itinerancy of the d-band electrons. The unprecedented torque sensitivity of 10^{-22} N m/ \sqrt{Hz} may enable applications for spintronics, precision measurements of CP-violating forces, untwisting of DNA and torque generating molecules.Comment: 14 pages, 4 figures. visit http://nano.bu.edu/ for related paper

    Electromyographic Analysis of the Shoulder Girdle Musculature during External Rotation Exercises

    Get PDF
    Background: Implementation of overhead activity, a key component of many professional sports, requires an effective and balanced activation of shoulder girdle muscles particularly during forceful external rotation motions. Purpose: The study aimed to identify activation strategies of 16 shoulder girdle muscles/muscle segments during common shoulder external rotational exercises. Study Design: Cross-Sectional Study Method: EMG was recorded in 30 healthy subjects from 16 shoulder girdle muscles/muscle segments (surface electrode: anterior, middle and posterior deltoid, upper, middle and lower trapezius, serratus anterior, teres major, upper and lower latissimus dorsi, upper and lower pectoralis major; fine wire electrodes: supraspinatus, infraspinatus, subscapularis and rhomboid major) using a telemetric EMG system. Five external rotation (ER) exercises (standing ER at 0o and 90o of abduction, and with under-arm towel roll, prone ER at 90o of abduction, side-lying ER with under-arm towel) were studied. Exercise EMG amplitudes were normalised to EMGmax (EMG at maximal ER force in a standard position). Univariate analysis of variance (ANOVA) and post-hoc analysis applied on EMG activity of each muscle to assess the main effect of exercise condition. Results: Muscular activity differed significantly among the ER exercises (P<0.05 – P<0.001). The highest activation for anterior and middle deltoid, supraspinatus, upper trapezius, and serratus anterior occurred during standing ER at 90o of abduction; for posterior deltoid, middle trapezius, and rhomboid during side-lying ER at 0° of abduction; for lower trapezius, upper and lower latissimus dorsi, subscapularis, and teres major during prone ER at 90o of abduction, and for clavicular and sternal part of pectoralis major during standing ER with Under-Arm Towel. Conclusion: Key glenohumeral and scapular muscles can be optimally activated during the specific ER exercises particularly in positions that stimulate athletic overhead motions. Clinical Relevance: These results enable sport medicine professionals to target specific muscles during shoulder rehabilitation protocols while minimising the effect of others, providing a foundation for optimal evidence-based exercise prescription. They also provide information for tailored muscle training and injury prevention in overhead sports

    Holographic phase diagram of quark-gluon plasma formed in heavy-ions collisions

    Get PDF
    The phase diagram of quark gluon plasma (QGP) formed at a very early stage just after the heavy ion collision is obtained by using a holographic dual model for the heavy ion collision. In this dual model colliding ions are described by the charged shock gravitational waves. Points on the phase diagram correspond to the QGP or hadronic matter with given temperatures and chemical potentials. The phase of QGP in dual terms is related to the case when the collision of shock waves leads to formation of trapped surface. Hadronic matter and other confined states correspond to the absence of trapped surface after collision. Multiplicity of the ion collision process is estimated in the dual language as area of the trapped surface. We show that a non-zero chemical potential reduces the multiplicity. To plot the phase diagram we use two different dual models of colliding ions, the point and the wall shock waves, and find qualitative agreement of the results.Comment: 33 pages, 14 figures, typos correcte
    corecore