157 research outputs found
The impact of polymorphic variations in the 5p15, 6p12, 6p21 and 15q25 loci on the risk and prognosis of Portuguese patients with non-small cell lung cancer
Polymorphic variants in the 5p15, 6p12, 6p21, and 15q25 loci were demonstrated to potentially contribute to lung cancer carcinogenesis. Therefore, this study was performed to assess the role of those variants in non-small cell lung cancer (NSCLC) risk and prognosis in a Portuguese population.
MATERIALS AND METHODS:
Blood from patients with NSCLC was prospectively collected. To perform an association study, DNA from these patients and healthy controls were genotyped for a panel of 19 SNPs using a Sequenom® MassARRAY platform. Kaplan-Meier curves were used to assess the overall survival (OS) and progression-free survival (PFS).
RESULTS:
One hundred and forty-four patients with NSCLC were successfully consecutively genotyped for the 19 SNPs. One SNP was associated with NSCLC risk: rs9295740 G/A. Two SNPs were associated with non-squamous histology: rs3024994 (VEGF intron 2) T/C and rs401681 C/T. Three SNPs were associated with response rate: rs3025035 (VEGF intron 7) C/T, rs833061 (VEGF -460) C/T and rs9295740 G/A. One SNP demonstrated an influence on PFS: rs401681 C/T at 5p15, p?=?0.021. Four SNPs demonstrated an influence on OS: rs2010963 (VEGF +405 G/C), p?=?0.042; rs3025010 (VEGF intron 5 C/T), p?=?0.047; rs401681 C/T at 5p15, p?=?0.046; and rs31489 C/A at 5p15, p?=?0.029.
CONCLUSIONS:
Our study suggests that SNPs in the 6p12, 6p21, and 5p15 loci may serve as risk, predictive and prognostic NSCLC biomarkers. In the future, SNPs identified in the genomes of patients may improve NSCLC screening strategies and therapeutic management as well.This project was supported by Programa Doutoral em Medicina e Oncologia Molecular, University of Porto, Porto, Portugal and University of Minho, Braga, Portugal. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
The Hong-Ou-Mandel effect with atoms
Controlling light at the level of individual photons has led to advances in
fields ranging from quantum information and precision sensing to fundamental
tests of quantum mechanics. A central development that followed the advent of
single photon sources was the observation of the Hong-Ou- Mandel (HOM) effect,
a novel two-photon path interference phenomenon experienced by
indistinguishable photons. The effect is now a central technique in the field
of quantum optics, harnessed for a variety of applications such as diagnosing
single photon sources and creating probabilistic entanglement in linear quantum
computing. Recently, several distinct experiments using atomic sources have
realized the requisite control to observe and exploit Hong-Ou-Mandel
interference of atoms. This article provides a summary of this phenomenon and
discusses some of its implications for atomic systems. Transitioning from the
domain of photons to atoms opens new perspectives on fundamental concepts, such
as the classification of entanglement of identical particles. It aids in the
design of novel probes of quantities such as entanglement entropy by combining
well established tools of AMO physics - unity single-atom detection, tunable
interactions, and scalability - with the Hong-Ou-Mandel interference.
Furthermore, it is now possible for established protocols in the photon
community, such as measurement-induced entanglement, to be employed in atomic
experiments that possess deterministic single-particle production and
detection. Hence, the realization of the HOM effect with atoms represents a
productive union of central ideas in quantum control of atoms and photons.Comment: 19 pages, 7 figure
Multimode quantum interference of photons in multiport integrated devices
We report the first demonstration of quantum interference in multimode
interference (MMI) devices and a new complete characterization technique that
can be applied to any photonic device that removes the need for phase stable
measurements. MMI devices provide a compact and robust realization of NxM
optical circuits, which will dramatically reduce the complexity and increase
the functionality of future generations of quantum photonic circuits
Anti-angiogenic therapy for cancer: Current progress, unresolved questions and future directions
Tumours require a vascular supply to grow and can achieve this via the expression of pro-angiogenic growth factors, including members of the vascular endothelial growth factor (VEGF) family of ligands. Since one or more of the VEGF ligand family is overexpressed in most solid cancers, there was great optimism that inhibition of the VEGF pathway would represent an effective anti-angiogenic therapy for most tumour types. Encouragingly, VEGF pathway targeted drugs such as bevacizumab, sunitinib and aflibercept have shown activity in certain settings. However, inhibition of VEGF signalling is not effective in all cancers, prompting the need to further understand how the vasculature can be effectively targeted in tumours. Here we present a succinct review of the progress with VEGF-targeted therapy and the unresolved questions that exist in the field: including its use in different disease stages (metastatic, adjuvant, neoadjuvant), interactions with chemotherapy, duration and scheduling of therapy, potential predictive biomarkers and proposed mechanisms of resistance, including paradoxical effects such as enhanced tumour aggressiveness. In terms of future directions, we discuss the need to delineate further the complexities of tumour vascularisation if we are to develop more effective and personalised anti-angiogenic therapies. © 2014 The Author(s)
Polimorfismos genéticos e carcinoma de pulmão de células não pequenas: os paradigmas do futuro
Aspergillus Myosin-V Supports Polarized Growth in the Absence of Microtubule-Based Transport
In the filamentous fungus Aspergillus nidulans, both microtubules and actin filaments are important for polarized growth at the hyphal tip. Less clear is how different microtubule-based and actin-based motors work together to support this growth. Here we examined the role of myosin-V (MYOV) in hyphal growth. MYOV-depleted cells form elongated hyphae, but the rate of hyphal elongation is significantly reduced. In addition, although wild type cells without microtubules still undergo polarized growth, microtubule disassembly abolishes polarized growth in MYOV-depleted cells. Thus, MYOV is essential for polarized growth in the absence of microtubules. Moreover, while a triple kinesin null mutant lacking kinesin-1 (KINA) and two kinesin-3s (UNCA and UNCB) undergoes hyphal elongation and forms a colony, depleting MYOV in this triple mutant results in lethality due to a severe defect in polarized growth. These results argue that MYOV, through its ability to transport secretory cargo, can support a significant amount of polarized hyphal tip growth in the absence of any microtubule-based transport. Finally, our genetic analyses also indicate that KINA (kinesin-1) rather than UNCA (kinesin-3) is the major kinesin motor that supports polarized growth in the absence of MYOV
Oleanolic Acid Initiates Apoptosis in Non-Small Cell Lung Cancer Cell Lines and Reduces Metastasis of a B16F10 Melanoma Model In Vivo
Drug resistance, a process mediated by multiple mechanisms, is a critical determinant for treating lung cancer. The aim of this study is to determine if oleanolic acid (OA), a pentacyclic triterpene present in several plants, is able to circumvent the mechanisms of drug resistance present in non-small cell lung cancer (NSCLC) cell lines and to induce their death.OA decreased the cell viability of the NSCLC cell lines A459 and H460 despite the presence of active, multidrug-resistant (MDR) MRP1/ABCC1 proteins and the anti-apoptotic proteins Bcl-2 and survivin. These effects are due to apoptosis, as evidenced by the capacity of OA to induce fragmentation of DNA and activate caspase 3. Induction of NSCLC cell death by OA cannot be explained by inhibition of the MDR proteins, since treatment with triterpene had little or no effect on the activity or expression of MRP1. Moreover, treatment with OA had no effect on the expression of the anti-apoptotic protein Bcl-2, but increased the expression of the pro-apoptotic protein Bax, altering the Bcl-2/Bax balance towards a pro-apoptotic profile. OA also decreased the expression of the anti-apoptotic protein survivin. Furthermore, OA decreased the expression of the angiogenic vascular endothelial growth factor (VEGF) and decreased the development of melanoma-induced lung metastasis.Our data provide a significant insight into the antitumoral and antimetastatic activity of OA in NSCLC and suggest that including OA in the NSCLC regimens may help to decrease the number of relapses and reduce the development of metastases
Effect of Angiogenesis Inhibitor Bevacizumab on Survival in Patients with Cancer: A Meta-Analysis of the Published Literature
Bevacizumab is a recombinant humanized monoclonal antibody against vascular endothelial growth factor which has been used in conjunction with other anti-cancer agents in the treatment of patients with many cancers. It remains controversial whether bevacizumab can prolong survival in cancer patients. This meta-analysis was therefore performed to evaluate effect of bevacizumab on survival in cancer patients. PubMed, EMBASE, and Web of Science databases were searched for English-language studies of randomized controlled trials comparing bevacizumab with control therapy published through February 8, 2012. Progression-free survival, overall survival, and one-year survival rate were analyzed using random- or fixed-effects model. Thirty one assessable randomized controlled trials were identified. A significant improvement in progression-free survival in cancer patients was attributable to bevacizumab compared with control therapy (hazard ratio, 0.72; 95% confidence interval, 0.68 to 0.76; p<0.001). Overall survival was also significantly longer in patients were treated with bevacizumab (hazard ratio, 0.87; 95% confidence interval, 0.83 to 0.91; p<0.001). The significant benefit in one-year survival rate was further seen in cancer patients receiving bevacizumab (odds ratio, 1.30; 95% confidence interval, 1.20 to 1.41; p<0.001). Current evidences showed that bevacizumab prolong progression-free survival and overall survival, and increase one-year survival rate in cancer patients as compared with control therapy
Emerging roles of T helper 17 and regulatory T cells in lung cancer progression and metastasis
- …
